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> lattice £L = BZ"
> minimum distance A;(£) := min{r > 0: rank(£L N B,) > 1}
> covering radius ;1(L) := MaXyespan(z) dist(x, £)
> quotient lattice L/L' = W;an(ﬂ,)(ﬁ), for L' C L
» (flat) torus R"/L
> torus metric: distgn/-(x + L,y + £) = dist(x — y, £)
(write distgn /2 (x,y) for simplicity)
> distortion of (injective) embedding f: expansion/contraction;

dist(f(x),f(y))
distzn /2 (x,y) '

» Goal: embed R"/L into Ly, with distortion O(y/nlog n)

expansion: sup, , contraction: inf...
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The HR10 Embedding

The HR10 Embedding H x(x) maps x € R"/L to a k-tuple (in ¢2)
of Gaussians centered at x with certain variances and coefficients
(determined by the “scale” A\1(L)).

Wrapping the Gaussians:
> strictly speaking inputs to Hg x should be x + £ € R"/L

» consequently for H x to be well defined, the output Gaussians
should be “wrapped around,” i.e., be the sum of all copies
centered at x + £, and live in Ly(R"/L) instead of L(R")
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Distortion of The HR10 Embedding

Hg k has distortion O(V/nk):
P> expansion: < v/7k
» contraction: > \/cy/n, where cy is absolute constant

> caveat for contraction: saturation at 2K=1 \;(L), i.e., only
have contraction w.r.t. min(distgn/2(x,y), 2571 A1(L))

Choices of k in HR10:

> k = O(log /{‘((Lﬁ))) distortion O( nlog )\((EL))>

» k = O(log n): distortion O(y/nlog n), while requiring
1(£) < poly(n) - A1(L)
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The Partitioning Embedding

> given good filtration F : {0} = Lo C L1 C - C Ln=L
> define projections 77]::] '= Tspan(L;/Lj_1) for j € [m]
(and analogously 7r2j, W;j,w;j,wéj)
this gives an orthogonal decomposition of the entire space

» define the compressed projections E](’E/")a = Z?;-a"_jﬂﬁ" for
J € [m], and the overall partitioning embedding Er , to be

the tuple (EJ(T{)Q, cee E}moz) (in £7)
> note that EJ(,TJ?Q(E) is not dense as long as o > 0, and thus

Eg?a(R”/ﬁ) gives a valid torus
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Where does Distortion Come from?

> want to embed distgn/-(x,y) = dist(x —y, £)
(for simplicity suppose y = 6)
» let v € L be a closest lattice vector (CV) to x;
then dist(x, £) = ||x — v/||
> want dist(EY) (x), EY (£)) = |EY) (x — v)|| so that they
add up to ©(1) - [[x — v|| and there is constant distortion
> however E](g?a(v) is not necessarily CV to E](g?a(x) due to:

1. projection (left figure: project onto y-direction)
2. compression (right figure: compress y-direction by o = 1/2)

both distorting the geometry

A 5V . BN



Expansion of The Partitioning Embedding

Although CV could change in each compressed projection, this only
leads to shorter embedded distance and does not harm expansion.

The expansion is easily < ,/l%az thanks to the geometric series

(and square root due to using /> tuple).
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vVvyyy

want to prove constant contraction
let j1 be the last index where CV changes
we know the part H7rj>7j1 (x — )| is “captured” by E}i{l)

if this part is already a constant fraction of ||x — v|| then we
get constant contraction

» so from now on suppose, say, Hﬂ]%jl(x —v)|12 > L{x —v|?

> we also know HE](_-J

lc)y(x —v)|| > %Al(Egli(L)) due to change

of CV (by triangle ineq., HEJ(TJI(l(v —vi)|| < 2HEJ(,TJI(1(X —v)|,
where E¥) (v0)) is CV to EY), (x))
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» suffice to find jo < ji s.t. HE(JO)(X —V')|| captures
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Contraction of The Partitioning Embedding: Act 2

» suffice to find jo < ji s.t. HE(JO)(X —V')|| captures
H7r§j1 (x — v)||, where v/ = yUo) (E(fjo(i(v ) is CV to E(Fjo(i(x))
(wl.o.g. |75 (x = v)|| < u(Ljp-1))
> try to bound [|EL) (x — v/)|12 = Y7 o200 |25 (x — V)2
P truncate the sum at some j, > j; to handle the exponential

factor: [EX) (x —v/)[> > a2 0) . S22 I7zi(x — /)2

2 _ 2 <Jo 2 > 2 2
> note that -2 |72 ()1 = |12 = Ir5° ()12 = 77 2()]
Lo |x—=V|?>||x —v|?as vis CV
2 5 )] < ) for e

want (L, 1) < 3 M(EL)(L));
then H7r<f°(x—v’)|| < 2||x—vH
3. hopefully [[m72(x — /)| = 772 (x — v)|| (< 5 [x - v])
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> suffice to show 772 (v') = 722 (v), or ELIV(v') = ELI(v)
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» “hopefully ||7T>J2( V|| = H7T>J2(X —v)|"
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M(EL (L))
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Contraction of The Partitioning Embedding: Act 2.5

» “hopefully ||7T>J2( V|| = H7T>J2(X —v)|"
> suffice to show w;”(v) ]>_-12( ), or Egz;rl)( ) = E(J'2+1)(V)
> if not, they are distant: ||E12+1)( V)| > )\1(E(Jz+1)(£))
> note that by algebra, ||Ejg° ()| > a”“_JOHE(’f;“l Ol

» hence
1

752 (x = v)|| > =[x — v > HE(f“x—vH
(x=v)l > =5 ZIEFax=v)

> fnfﬁéf’a(v—v)u
aJ2+1 —Jo (o+1

> )\ EJZ+)E

> = MER(0)

» on the other hand ||7T<Jl(X =) < (L)

so want p(Lj,) < “j;}jo A (E(Jﬁl)(ﬁ)) for contradiction
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Contraction of The Partitioning Embedding: Act 3

» already manage to capture H7r]§_-j1 (x — v)||, even the entire
Ix = v, by [|EE) (x = )7

» need to consider saturation of HR10, i.e., can only use
min(|[EY (x — vO)||, poly(n) - A1 (E (}a(z))) for each j

» for E(>Jl) they still capture H7r>ﬂ(x —v)|| as long as
u(L7) < poly(n) - M(EZ, (L))

> for Eg?) (to capture H7r<11(x —v)]|), want
p(L;,) < poly(n) - M (EL) (L))

Finally we have ©(1) contraction (considering saturation of HR10),
and thus ©(1) distortion of the partitioning embedding,

and thus O(y/nlog n) overall distortion after composing with the
HR10 embedding.
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Good Filtration

During the contraction proof we assumed:
(L) < poly(n) - M(EL, (L)), m(Ljp1) < FM(EL)(£)),

H(Ly) < poly(n) - M(ELU(L)), (L) < a”;;’f’ M (ES(L)).

These reduce to (3, y)-filtration:
> L/ Lj-1) < B ML)/ L)
> M(Ljra/Ly) > v - M(Li/Lj-1)
> i.e., separated scales!
(along with mild enough compression o > 1/)
(v+/n, y)-filtration can be achieved using Korkine—Zolotarev basis.

The idea is intuitive: to group shortest bases into one sublattice
until reaching a next scale that is v times larger.
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Open Questions, Extended

» Finite dimensional embeddings

> via discretization?

» trade-off between distortion and dimensionality
» Efficiently computable embeddings

» Korkine—Zolotarev basis is hard to compute

> necessary for algorithmic applications, if any :|
> Lattice-specific distortion upper bound

> e.g. O(1) distortion for Z"

> potentially involving A1(£) and u(£)

> lower bound: Q(Ai(£*) - p(£)/v/n) > QUHES - v/n)

» by having “adaptive” compression factor a?
» Embedding into L, instead of L

» for L, same lower bound
» for finite dimensionality we can embed from ¢, into ¢,



