

Nearly Optimal Embeddings of Flat Tori

Technical Proofs

Yi Tang

Joint work with Ishan Agarwal and Oded Regev

August 19, 2021

Notations & Definitions

- ▶ lattice $\mathcal{L} = \mathbf{B}\mathbb{Z}^n$
 - ▶ minimum distance $\lambda_1(\mathcal{L}) := \min\{r > 0 : \text{rank}(\mathcal{L} \cap \mathcal{B}_r) \geq 1\}$
 - ▶ covering radius $\mu(\mathcal{L}) := \max_{\mathbf{x} \in \text{span}(\mathcal{L})} \text{dist}(\mathbf{x}, \mathcal{L})$
 - ▶ quotient lattice $\mathcal{L}/\mathcal{L}' := \pi_{\text{span}(\mathcal{L}')}^\perp(\mathcal{L})$, for $\mathcal{L}' \subset \mathcal{L}$
- ▶ (flat) torus \mathbb{R}^n/\mathcal{L}
 - ▶ torus metric: $\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x} + \mathcal{L}, \mathbf{y} + \mathcal{L}) = \text{dist}(\mathbf{x} - \mathbf{y}, \mathcal{L})$
(write $\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y})$ for simplicity)
 - ▶ distortion of (injective) embedding f : expansion/contraction;
expansion: $\sup_{\mathbf{x}, \mathbf{y}} \frac{\text{dist}(f(\mathbf{x}), f(\mathbf{y}))}{\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y})}$, contraction: $\inf \dots$
- ▶ Goal: embed \mathbb{R}^n/\mathcal{L} into L_2 , with distortion $O(\sqrt{n \log n})$

Notations & Definitions

- ▶ lattice $\mathcal{L} = \mathbf{B}\mathbb{Z}^n$
 - ▶ minimum distance $\lambda_1(\mathcal{L}) := \min\{r > 0 : \text{rank}(\mathcal{L} \cap \mathcal{B}_r) \geq 1\}$
 - ▶ *covering radius* $\mu(\mathcal{L}) := \max_{\mathbf{x} \in \text{span}(\mathcal{L})} \text{dist}(\mathbf{x}, \mathcal{L})$
 - ▶ *quotient lattice* $\mathcal{L}/\mathcal{L}' := \pi_{\text{span}(\mathcal{L}')}^\perp(\mathcal{L})$, for $\mathcal{L}' \subset \mathcal{L}$
- ▶ (flat) torus \mathbb{R}^n/\mathcal{L}
 - ▶ torus metric: $\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x} + \mathcal{L}, \mathbf{y} + \mathcal{L}) = \text{dist}(\mathbf{x} - \mathbf{y}, \mathcal{L})$
(write $\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y})$ for simplicity)
 - ▶ distortion of (injective) embedding f : expansion/contraction;
expansion: $\sup_{\mathbf{x}, \mathbf{y}} \frac{\text{dist}(f(\mathbf{x}), f(\mathbf{y}))}{\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y})}$, contraction: $\inf \dots$
- ▶ Goal: embed \mathbb{R}^n/\mathcal{L} into L_2 , with distortion $O(\sqrt{n \log n})$

Notations & Definitions

- ▶ lattice $\mathcal{L} = \mathbf{B}\mathbb{Z}^n$
 - ▶ minimum distance $\lambda_1(\mathcal{L}) := \min\{r > 0 : \text{rank}(\mathcal{L} \cap \mathcal{B}_r) \geq 1\}$
 - ▶ *covering radius* $\mu(\mathcal{L}) := \max_{\mathbf{x} \in \text{span}(\mathcal{L})} \text{dist}(\mathbf{x}, \mathcal{L})$
 - ▶ *quotient lattice* $\mathcal{L}/\mathcal{L}' := \pi_{\text{span}(\mathcal{L}')}^\perp(\mathcal{L})$, for $\mathcal{L}' \subset \mathcal{L}$
- ▶ (flat) torus \mathbb{R}^n/\mathcal{L}
 - ▶ torus metric: $\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x} + \mathcal{L}, \mathbf{y} + \mathcal{L}) = \text{dist}(\mathbf{x} - \mathbf{y}, \mathcal{L})$
(write $\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y})$ for simplicity)
 - ▶ distortion of (injective) embedding f : expansion/contraction;
expansion: $\sup_{\mathbf{x}, \mathbf{y}} \frac{\text{dist}(f(\mathbf{x}), f(\mathbf{y}))}{\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y})}$, contraction: $\inf \dots$
- ▶ Goal: embed \mathbb{R}^n/\mathcal{L} into L_2 , with distortion $O(\sqrt{n \log n})$

Notations & Definitions

- ▶ lattice $\mathcal{L} = \mathbf{B}\mathbb{Z}^n$
 - ▶ minimum distance $\lambda_1(\mathcal{L}) := \min\{r > 0 : \text{rank}(\mathcal{L} \cap \mathcal{B}_r) \geq 1\}$
 - ▶ *covering radius* $\mu(\mathcal{L}) := \max_{\mathbf{x} \in \text{span}(\mathcal{L})} \text{dist}(\mathbf{x}, \mathcal{L})$
 - ▶ *quotient lattice* $\mathcal{L}/\mathcal{L}' := \pi_{\text{span}(\mathcal{L}')}^\perp(\mathcal{L})$, for $\mathcal{L}' \subset \mathcal{L}$
- ▶ (flat) torus \mathbb{R}^n/\mathcal{L}
 - ▶ torus metric: $\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x} + \mathcal{L}, \mathbf{y} + \mathcal{L}) = \text{dist}(\mathbf{x} - \mathbf{y}, \mathcal{L})$
(write $\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y})$ for simplicity)
 - ▶ distortion of (injective) embedding f : expansion/contraction;
expansion: $\sup_{\mathbf{x}, \mathbf{y}} \frac{\text{dist}(f(\mathbf{x}), f(\mathbf{y}))}{\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y})}$, contraction: $\inf \dots$
- ▶ Goal: embed \mathbb{R}^n/\mathcal{L} into L_2 , with distortion $O(\sqrt{n \log n})$

Notations & Definitions

- ▶ lattice $\mathcal{L} = \mathbf{B}\mathbb{Z}^n$
 - ▶ minimum distance $\lambda_1(\mathcal{L}) := \min\{r > 0 : \text{rank}(\mathcal{L} \cap \mathcal{B}_r) \geq 1\}$
 - ▶ *covering radius* $\mu(\mathcal{L}) := \max_{\mathbf{x} \in \text{span}(\mathcal{L})} \text{dist}(\mathbf{x}, \mathcal{L})$
 - ▶ *quotient lattice* $\mathcal{L}/\mathcal{L}' := \pi_{\text{span}(\mathcal{L}')}^\perp(\mathcal{L})$, for $\mathcal{L}' \subset \mathcal{L}$
- ▶ (flat) torus \mathbb{R}^n/\mathcal{L}
 - ▶ torus metric: $\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x} + \mathcal{L}, \mathbf{y} + \mathcal{L}) = \text{dist}(\mathbf{x} - \mathbf{y}, \mathcal{L})$
(write $\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y})$ for simplicity)
 - ▶ distortion of (injective) embedding f : expansion/contraction;
expansion: $\sup_{\mathbf{x}, \mathbf{y}} \frac{\text{dist}(f(\mathbf{x}), f(\mathbf{y}))}{\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y})}$, contraction: $\inf \dots$
- ▶ Goal: embed \mathbb{R}^n/\mathcal{L} into L_2 , with distortion $O(\sqrt{n \log n})$

Notations & Definitions

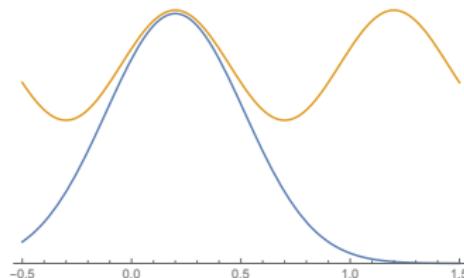
- ▶ lattice $\mathcal{L} = \mathbf{B}\mathbb{Z}^n$
 - ▶ minimum distance $\lambda_1(\mathcal{L}) := \min\{r > 0 : \text{rank}(\mathcal{L} \cap \mathcal{B}_r) \geq 1\}$
 - ▶ *covering radius* $\mu(\mathcal{L}) := \max_{\mathbf{x} \in \text{span}(\mathcal{L})} \text{dist}(\mathbf{x}, \mathcal{L})$
 - ▶ *quotient lattice* $\mathcal{L}/\mathcal{L}' := \pi_{\text{span}(\mathcal{L}')}^\perp(\mathcal{L})$, for $\mathcal{L}' \subset \mathcal{L}$
- ▶ (flat) torus \mathbb{R}^n/\mathcal{L}
 - ▶ torus metric: $\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x} + \mathcal{L}, \mathbf{y} + \mathcal{L}) = \text{dist}(\mathbf{x} - \mathbf{y}, \mathcal{L})$
(write $\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y})$ for simplicity)
 - ▶ distortion of (injective) embedding f : expansion/contraction;
expansion: $\sup_{\mathbf{x}, \mathbf{y}} \frac{\text{dist}(f(\mathbf{x}), f(\mathbf{y}))}{\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y})}$, contraction: $\inf \dots$
- ▶ Goal: embed \mathbb{R}^n/\mathcal{L} into L_2 , with distortion $O(\sqrt{n \log n})$

The HR10 Embedding

The HR10 Embedding $H_{\mathcal{L},k}(\mathbf{x})$ maps $\mathbf{x} \in \mathbb{R}^n / \mathcal{L}$ to a k -tuple (in ℓ_2) of Gaussians centered at \mathbf{x} with certain variances and coefficients (determined by the “scale” $\lambda_1(\mathcal{L})$).

Wrapping the Gaussians:

- ▶ strictly speaking inputs to $H_{\mathcal{L},k}$ should be $\mathbf{x} + \mathcal{L} \in \mathbb{R}^n / \mathcal{L}$
- ▶ consequently for $H_{\mathcal{L},k}$ to be well defined, the output Gaussians should be “wrapped around,” i.e., be the sum of all copies centered at $\mathbf{x} + \mathcal{L}$, and live in $L_2(\mathbb{R}^n / \mathcal{L})$ instead of $L_2(\mathbb{R}^n)$

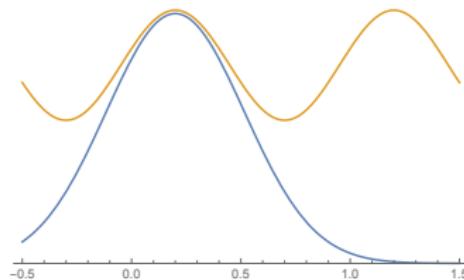


The HR10 Embedding

The HR10 Embedding $H_{\mathcal{L},k}(\mathbf{x})$ maps $\mathbf{x} \in \mathbb{R}^n / \mathcal{L}$ to a k -tuple (in ℓ_2) of Gaussians centered at \mathbf{x} with certain variances and coefficients (determined by the “scale” $\lambda_1(\mathcal{L})$).

Wrapping the Gaussians:

- ▶ strictly speaking inputs to $H_{\mathcal{L},k}$ should be $\mathbf{x} + \mathcal{L} \in \mathbb{R}^n / \mathcal{L}$
- ▶ consequently for $H_{\mathcal{L},k}$ to be well defined, the output Gaussians should be “wrapped around,” i.e., be the sum of all copies centered at $\mathbf{x} + \mathcal{L}$, and live in $L_2(\mathbb{R}^n / \mathcal{L})$ instead of $L_2(\mathbb{R}^n)$



Distortion of The HR10 Embedding

$H_{\mathcal{L},k}$ has distortion $O(\sqrt{nk})$:

- ▶ expansion: $\leq \sqrt{\pi k}$
- ▶ contraction: $\geq \sqrt{c_H/n}$, where c_H is absolute constant
- ▶ caveat for contraction: saturation at $2^{k-1} \lambda_1(\mathcal{L})$, i.e., only have contraction w.r.t. $\min(\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y}), 2^{k-1} \lambda_1(\mathcal{L}))$

Choices of k in HR10:

- ▶ $k = O(\log \frac{\mu(\mathcal{L})}{\lambda_1(\mathcal{L})})$: distortion $O\left(\sqrt{n \log \frac{\mu(\mathcal{L})}{\lambda_1(\mathcal{L})}}\right)$
- ▶ $k = O(\log n)$: distortion $O(\sqrt{n \log n})$, while requiring $\mu(\mathcal{L}) \leq \text{poly}(n) \cdot \lambda_1(\mathcal{L})$

Distortion of The HR10 Embedding

$H_{\mathcal{L},k}$ has distortion $O(\sqrt{nk})$:

- ▶ expansion: $\leq \sqrt{\pi k}$
- ▶ contraction: $\geq \sqrt{c_H/n}$, where c_H is absolute constant
- ▶ caveat for contraction: saturation at $2^{k-1} \lambda_1(\mathcal{L})$, i.e., only have contraction w.r.t. $\min(\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y}), 2^{k-1} \lambda_1(\mathcal{L}))$

Choices of k in HR10:

- ▶ $k = O(\log \frac{\mu(\mathcal{L})}{\lambda_1(\mathcal{L})})$: distortion $O\left(\sqrt{n \log \frac{\mu(\mathcal{L})}{\lambda_1(\mathcal{L})}}\right)$
- ▶ $k = O(\log n)$: distortion $O(\sqrt{n \log n})$, while requiring $\mu(\mathcal{L}) \leq \text{poly}(n) \cdot \lambda_1(\mathcal{L})$

Distortion of The HR10 Embedding

$H_{\mathcal{L},k}$ has distortion $O(\sqrt{nk})$:

- ▶ expansion: $\leq \sqrt{\pi k}$
- ▶ contraction: $\geq \sqrt{c_H/n}$, where c_H is absolute constant
- ▶ caveat for contraction: saturation at $2^{k-1} \lambda_1(\mathcal{L})$, i.e., only have contraction w.r.t. $\min(\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y}), 2^{k-1} \lambda_1(\mathcal{L}))$

Choices of k in HR10:

- ▶ $k = O(\log \frac{\mu(\mathcal{L})}{\lambda_1(\mathcal{L})})$: distortion $O\left(\sqrt{n \log \frac{\mu(\mathcal{L})}{\lambda_1(\mathcal{L})}}\right)$
- ▶ $k = O(\log n)$: distortion $O(\sqrt{n \log n})$, while requiring $\mu(\mathcal{L}) \leq \text{poly}(n) \cdot \lambda_1(\mathcal{L})$

The Partitioning Embedding

- ▶ given *good filtration* $\mathcal{F} : \{\vec{0}\} = \mathcal{L}_0 \subset \mathcal{L}_1 \subset \cdots \subset \mathcal{L}_m = \mathcal{L}$
- ▶ define projections $\pi_{\mathcal{F}}^{\equiv j} := \pi_{\text{span}(\mathcal{L}_j / \mathcal{L}_{j-1})}$ for $j \in [m]$
(and analogously $\pi_{\mathcal{F}}^{\geq j}, \pi_{\mathcal{F}}^{> j}, \pi_{\mathcal{F}}^{< j}, \pi_{\mathcal{F}}^{\leq j}$);
this gives an orthogonal decomposition of the entire space
- ▶ define the *compressed projections* $E_{\mathcal{F}, \alpha}^{(j)} := \sum_{i=j}^m \alpha^{i-j} \pi_{\mathcal{F}}^{\equiv i}$ for $j \in [m]$, and the overall partitioning embedding $E_{\mathcal{F}, \alpha}$ to be the tuple $(E_{\mathcal{F}, \alpha}^{(1)}, \dots, E_{\mathcal{F}, \alpha}^{(m)})$ (in ℓ_2)
- ▶ note that $E_{\mathcal{F}, \alpha}^{(j)}(\mathcal{L})$ is not dense as long as $\alpha > 0$, and thus $E_{\mathcal{F}, \alpha}^{(j)}(\mathbb{R}^n / \mathcal{L})$ gives a valid torus

The Partitioning Embedding

- ▶ given *good filtration* $\mathcal{F} : \{\vec{0}\} = \mathcal{L}_0 \subset \mathcal{L}_1 \subset \cdots \subset \mathcal{L}_m = \mathcal{L}$
- ▶ define projections $\pi_{\mathcal{F}}^{\equiv j} := \pi_{\text{span}(\mathcal{L}_j / \mathcal{L}_{j-1})}$ for $j \in [m]$
(and analogously $\pi_{\mathcal{F}}^{\geq j}, \pi_{\mathcal{F}}^{> j}, \pi_{\mathcal{F}}^{< j}, \pi_{\mathcal{F}}^{\leq j}$);
this gives an orthogonal decomposition of the entire space
- ▶ define the *compressed projections* $E_{\mathcal{F}, \alpha}^{(j)} := \sum_{i=j}^m \alpha^{i-j} \pi_{\mathcal{F}}^{\equiv i}$ for $j \in [m]$, and the overall partitioning embedding $E_{\mathcal{F}, \alpha}$ to be the tuple $(E_{\mathcal{F}, \alpha}^{(1)}, \dots, E_{\mathcal{F}, \alpha}^{(m)})$ (in ℓ_2)
- ▶ note that $E_{\mathcal{F}, \alpha}^{(j)}(\mathcal{L})$ is not dense as long as $\alpha > 0$, and thus $E_{\mathcal{F}, \alpha}^{(j)}(\mathbb{R}^n / \mathcal{L})$ gives a valid torus

The Partitioning Embedding

- ▶ given *good filtration* $\mathcal{F} : \{\vec{0}\} = \mathcal{L}_0 \subset \mathcal{L}_1 \subset \cdots \subset \mathcal{L}_m = \mathcal{L}$
- ▶ define projections $\pi_{\mathcal{F}}^{\equiv j} := \pi_{\text{span}(\mathcal{L}_j / \mathcal{L}_{j-1})}$ for $j \in [m]$
(and analogously $\pi_{\mathcal{F}}^{\geq j}, \pi_{\mathcal{F}}^{> j}, \pi_{\mathcal{F}}^{< j}, \pi_{\mathcal{F}}^{\leq j}$);
this gives an orthogonal decomposition of the entire space
- ▶ define the *compressed projections* $E_{\mathcal{F}, \alpha}^{(j)} := \sum_{i=j}^m \alpha^{i-j} \pi_{\mathcal{F}}^{\equiv i}$ for $j \in [m]$, and the overall partitioning embedding $E_{\mathcal{F}, \alpha}$ to be the tuple $(E_{\mathcal{F}, \alpha}^{(1)}, \dots, E_{\mathcal{F}, \alpha}^{(m)})$ (in ℓ_2)
- ▶ note that $E_{\mathcal{F}, \alpha}^{(j)}(\mathcal{L})$ is not dense as long as $\alpha > 0$, and thus $E_{\mathcal{F}, \alpha}^{(j)}(\mathbb{R}^n / \mathcal{L})$ gives a valid torus

Where does Distortion Come from?

- ▶ want to embed $\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y}) = \text{dist}(\mathbf{x} - \mathbf{y}, \mathcal{L})$
(for simplicity suppose $\mathbf{y} = \vec{0}$)
- ▶ let $\mathbf{v} \in \mathcal{L}$ be a closest lattice vector (CV) to \mathbf{x} ;
then $\text{dist}(\mathbf{x}, \mathcal{L}) = \|\mathbf{x} - \mathbf{v}\|$
- ▶ want $\text{dist}(E_{\mathcal{F}, \alpha}^{(j)}(\mathbf{x}), E_{\mathcal{F}, \alpha}^{(j)}(\mathcal{L})) = \|E_{\mathcal{F}, \alpha}^{(j)}(\mathbf{x} - \mathbf{v})\|$ so that they add up to $\Theta(1) \cdot \|\mathbf{x} - \mathbf{v}\|$ and there is constant distortion
- ▶ however $E_{\mathcal{F}, \alpha}^{(j)}(\mathbf{v})$ is not necessarily CV to $E_{\mathcal{F}, \alpha}^{(j)}(\mathbf{x})$ due to:
 1. projection (left figure: project onto y -direction)
 2. compression (right figure: compress y -direction by $\alpha = 1/2$)both distorting the geometry

Where does Distortion Come from?

- ▶ want to embed $\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y}) = \text{dist}(\mathbf{x} - \mathbf{y}, \mathcal{L})$
(for simplicity suppose $\mathbf{y} = \vec{0}$)
- ▶ let $\mathbf{v} \in \mathcal{L}$ be a closest lattice vector (CV) to \mathbf{x} ;
then $\text{dist}(\mathbf{x}, \mathcal{L}) = \|\mathbf{x} - \mathbf{v}\|$
- ▶ want $\text{dist}(E_{\mathcal{F},\alpha}^{(j)}(\mathbf{x}), E_{\mathcal{F},\alpha}^{(j)}(\mathcal{L})) = \|E_{\mathcal{F},\alpha}^{(j)}(\mathbf{x} - \mathbf{v})\|$ so that they
add up to $\Theta(1) \cdot \|\mathbf{x} - \mathbf{v}\|$ and there is constant distortion
- ▶ however $E_{\mathcal{F},\alpha}^{(j)}(\mathbf{v})$ is not necessarily CV to $E_{\mathcal{F},\alpha}^{(j)}(\mathbf{x})$ due to:
 1. projection (left figure: project onto y -direction)
 2. compression (right figure: compress y -direction by $\alpha = 1/2$)both distorting the geometry

Where does Distortion Come from?

- ▶ want to embed $\text{dist}_{\mathbb{R}^n/\mathcal{L}}(\mathbf{x}, \mathbf{y}) = \text{dist}(\mathbf{x} - \mathbf{y}, \mathcal{L})$
(for simplicity suppose $\mathbf{y} = \vec{0}$)
- ▶ let $\mathbf{v} \in \mathcal{L}$ be a closest lattice vector (CV) to \mathbf{x} ;
then $\text{dist}(\mathbf{x}, \mathcal{L}) = \|\mathbf{x} - \mathbf{v}\|$
- ▶ want $\text{dist}(E_{\mathcal{F},\alpha}^{(j)}(\mathbf{x}), E_{\mathcal{F},\alpha}^{(j)}(\mathcal{L})) = \|E_{\mathcal{F},\alpha}^{(j)}(\mathbf{x} - \mathbf{v})\|$ so that they add up to $\Theta(1) \cdot \|\mathbf{x} - \mathbf{v}\|$ and there is constant distortion
- ▶ however $E_{\mathcal{F},\alpha}^{(j)}(\mathbf{v})$ is not necessarily CV to $E_{\mathcal{F},\alpha}^{(j)}(\mathbf{x})$ due to:
 1. projection (left figure: project onto y -direction)
 2. compression (right figure: compress y -direction by $\alpha = 1/2$)both distorting the geometry

Expansion of The Partitioning Embedding

Although CV could change in each compressed projection, this only leads to shorter embedded distance and does not harm expansion.

The expansion is easily $\leq \sqrt{\frac{1}{1-\alpha^2}}$ thanks to the geometric series (and square root due to using ℓ_2 tuple).

Contraction of The Partitioning Embedding: Act 1

- ▶ want to prove constant contraction
- ▶ let j_1 be the last index where CV changes
- ▶ we know the part $\|\pi_{\mathcal{F}}^{>j_1}(\mathbf{x} - \mathbf{v})\|$ is “captured” by $E_{\mathcal{F},\alpha}^{(>j_1)}$
- ▶ if this part is already a constant fraction of $\|\mathbf{x} - \mathbf{v}\|$ then we get constant contraction
- ▶ so from now on suppose, say, $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|^2 > \frac{1}{2}\|\mathbf{x} - \mathbf{v}\|^2$
- ▶ we also know $\|E_{\mathcal{F},\alpha}^{(j_1)}(\mathbf{x} - \mathbf{v})\| \geq \frac{1}{2}\lambda_1(E_{\mathcal{F},\alpha}^{(j_1)}(\mathcal{L}))$, due to change of CV (by triangle ineq., $\|E_{\mathcal{F},\alpha}^{(j_1)}(\mathbf{v} - \mathbf{v}^{(j_1)})\| \leq 2\|E_{\mathcal{F},\alpha}^{(j_1)}(\mathbf{x} - \mathbf{v})\|$, where $E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{v}^{(j)})$ is CV to $E_{\mathcal{F},\alpha}^{(j)}(\mathbf{x})$)

Contraction of The Partitioning Embedding: Act 1

- ▶ want to prove constant contraction
- ▶ let j_1 be the last index where CV changes
- ▶ we know the part $\|\pi_{\mathcal{F}}^{>j_1}(\mathbf{x} - \mathbf{v})\|$ is “captured” by $E_{\mathcal{F},\alpha}^{(>j_1)}$
- ▶ if this part is already a constant fraction of $\|\mathbf{x} - \mathbf{v}\|$ then we get constant contraction
- ▶ so from now on suppose, say, $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|^2 > \frac{1}{2}\|\mathbf{x} - \mathbf{v}\|^2$
- ▶ we also know $\|E_{\mathcal{F},\alpha}^{(j_1)}(\mathbf{x} - \mathbf{v})\| \geq \frac{1}{2}\lambda_1(E_{\mathcal{F},\alpha}^{(j_1)}(\mathcal{L}))$, due to change of CV (by triangle ineq., $\|E_{\mathcal{F},\alpha}^{(j_1)}(\mathbf{v} - \mathbf{v}^{(j_1)})\| \leq 2\|E_{\mathcal{F},\alpha}^{(j_1)}(\mathbf{x} - \mathbf{v})\|$, where $E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{v}^{(j)})$ is CV to $E_{\mathcal{F},\alpha}^{(j)}(\mathbf{x})$)

Contraction of The Partitioning Embedding: Act 1

- ▶ want to prove constant contraction
- ▶ let j_1 be the last index where CV changes
- ▶ we know the part $\|\pi_{\mathcal{F}}^{>j_1}(\mathbf{x} - \mathbf{v})\|$ is “captured” by $E_{\mathcal{F},\alpha}^{(>j_1)}$
- ▶ if this part is already a constant fraction of $\|\mathbf{x} - \mathbf{v}\|$ then we get constant contraction
- ▶ so from now on suppose, say, $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|^2 > \frac{1}{2}\|\mathbf{x} - \mathbf{v}\|^2$
- ▶ we also know $\|E_{\mathcal{F},\alpha}^{(j_1)}(\mathbf{x} - \mathbf{v})\| \geq \frac{1}{2}\lambda_1(E_{\mathcal{F},\alpha}^{(j_1)}(\mathcal{L}))$, due to change of CV (by triangle ineq., $\|E_{\mathcal{F},\alpha}^{(j_1)}(\mathbf{v} - \mathbf{v}^{(j_1)})\| \leq 2\|E_{\mathcal{F},\alpha}^{(j_1)}(\mathbf{x} - \mathbf{v})\|$, where $E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{v}^{(j)})$ is CV to $E_{\mathcal{F},\alpha}^{(j)}(\mathbf{x})$)

Contraction of The Partitioning Embedding: Act 1

- ▶ want to prove constant contraction
- ▶ let j_1 be the last index where CV changes
- ▶ we know the part $\|\pi_{\mathcal{F}}^{>j_1}(\mathbf{x} - \mathbf{v})\|$ is “captured” by $E_{\mathcal{F},\alpha}^{(>j_1)}$
- ▶ if this part is already a constant fraction of $\|\mathbf{x} - \mathbf{v}\|$ then we get constant contraction
- ▶ so from now on suppose, say, $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|^2 > \frac{1}{2}\|\mathbf{x} - \mathbf{v}\|^2$
- ▶ we also know $\|E_{\mathcal{F},\alpha}^{(j_1)}(\mathbf{x} - \mathbf{v})\| \geq \frac{1}{2}\lambda_1(E_{\mathcal{F},\alpha}^{(j_1)}(\mathcal{L}))$, due to change of CV (by triangle ineq., $\|E_{\mathcal{F},\alpha}^{(j_1)}(\mathbf{v} - \mathbf{v}^{(j_1)})\| \leq 2\|E_{\mathcal{F},\alpha}^{(j_1)}(\mathbf{x} - \mathbf{v})\|$, where $E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{v}^{(j)})$ is CV to $E_{\mathcal{F},\alpha}^{(j)}(\mathbf{x})$)

Contraction of The Partitioning Embedding: Act 2

- ▶ suffice to find $j_0 \leq j_1$ s.t. $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|$ captures $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$, where $\mathbf{v}' = \mathbf{v}^{(j_0)}$ ($E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{v}')$ is CV to $E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x})$) (w.l.o.g. $\|\pi_{\mathcal{F}}^{\leq j_0}(\mathbf{x} - \mathbf{v}')\| \leq \mu(\mathcal{L}_{j_0-1})$)
- ▶ try to bound $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|^2 = \sum_{i=j_0}^m \alpha^{2(i-j_0)} \|\pi_{\mathcal{F}}^{\equiv i}(\mathbf{x} - \mathbf{v}')\|^2$
- ▶ truncate the sum at some $j_2 \geq j_1$ to handle the exponential factor: $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|^2 \geq \alpha^{2(j_2-j_0)} \cdot \sum_{i=j_0}^{j_2} \|\pi_{\mathcal{F}}^{\equiv i}(\mathbf{x} - \mathbf{v}')\|^2$
- ▶ note that $\sum_{i=j_0}^{j_2} \|\pi_{\mathcal{F}}^{\equiv i}(\cdot)\|^2 = \|\cdot\|^2 - \|\pi_{\mathcal{F}}^{< j_0}(\cdot)\|^2 - \|\pi_{\mathcal{F}}^{> j_2}(\cdot)\|^2$
 1. $\|\mathbf{x} - \mathbf{v}'\|^2 \geq \|\mathbf{x} - \mathbf{v}\|^2$ as \mathbf{v} is CV
 2. $\|\pi_{\mathcal{F}}^{< j_0}(\mathbf{x} - \mathbf{v}')\| \leq \mu(\mathcal{L}_{j_0-1})$ for free;
want $\mu(\mathcal{L}_{j_0-1}) \leq \frac{1}{4} \lambda_1(E_{\mathcal{F},\alpha}^{(j_1)}(\mathcal{L}))$;
then $\|\pi_{\mathcal{F}}^{< j_0}(\mathbf{x} - \mathbf{v}')\| \leq \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|$
 3. hopefully $\|\pi_{\mathcal{F}}^{> j_2}(\mathbf{x} - \mathbf{v}')\| = \|\pi_{\mathcal{F}}^{> j_2}(\mathbf{x} - \mathbf{v})\| (< \frac{1}{\sqrt{2}} \|\mathbf{x} - \mathbf{v}\|)$

Contraction of The Partitioning Embedding: Act 2

- ▶ suffice to find $j_0 \leq j_1$ s.t. $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|$ captures $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$, where $\mathbf{v}' = \mathbf{v}^{(j_0)}$ ($E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{v}')$ is CV to $E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x})$) (w.l.o.g. $\|\pi_{\mathcal{F}}^{\leq j_0}(\mathbf{x} - \mathbf{v}')\| \leq \mu(\mathcal{L}_{j_0-1})$)
- ▶ try to bound $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|^2 = \sum_{i=j_0}^m \alpha^{2(i-j_0)} \|\pi_{\mathcal{F}}^{\equiv i}(\mathbf{x} - \mathbf{v}')\|^2$
- ▶ truncate the sum at some $j_2 \geq j_1$ to handle the exponential factor: $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|^2 \geq \alpha^{2(j_2-j_0)} \cdot \sum_{i=j_0}^{j_2} \|\pi_{\mathcal{F}}^{\equiv i}(\mathbf{x} - \mathbf{v}')\|^2$
- ▶ note that $\sum_{i=j_0}^{j_2} \|\pi_{\mathcal{F}}^{\equiv i}(\cdot)\|^2 = \|\cdot\|^2 - \|\pi_{\mathcal{F}}^{< j_0}(\cdot)\|^2 - \|\pi_{\mathcal{F}}^{> j_2}(\cdot)\|^2$
 1. $\|\mathbf{x} - \mathbf{v}'\|^2 \geq \|\mathbf{x} - \mathbf{v}\|^2$ as \mathbf{v} is CV
 2. $\|\pi_{\mathcal{F}}^{< j_0}(\mathbf{x} - \mathbf{v}')\| \leq \mu(\mathcal{L}_{j_0-1})$ for free;
want $\mu(\mathcal{L}_{j_0-1}) \leq \frac{1}{4} \lambda_1(E_{\mathcal{F},\alpha}^{(j_1)}(\mathcal{L}))$;
then $\|\pi_{\mathcal{F}}^{< j_0}(\mathbf{x} - \mathbf{v}')\| \leq \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|$
 3. hopefully $\|\pi_{\mathcal{F}}^{> j_2}(\mathbf{x} - \mathbf{v}')\| = \|\pi_{\mathcal{F}}^{> j_2}(\mathbf{x} - \mathbf{v})\| (< \frac{1}{\sqrt{2}} \|\mathbf{x} - \mathbf{v}\|)$

Contraction of The Partitioning Embedding: Act 2

- ▶ suffice to find $j_0 \leq j_1$ s.t. $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|$ captures $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$, where $\mathbf{v}' = \mathbf{v}^{(j_0)}$ ($E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{v}')$ is CV to $E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x})$) (w.l.o.g. $\|\pi_{\mathcal{F}}^{\leq j_0}(\mathbf{x} - \mathbf{v}')\| \leq \mu(\mathcal{L}_{j_0-1})$)
- ▶ try to bound $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|^2 = \sum_{i=j_0}^m \alpha^{2(i-j_0)} \|\pi_{\mathcal{F}}^{\equiv i}(\mathbf{x} - \mathbf{v}')\|^2$
- ▶ truncate the sum at some $j_2 \geq j_1$ to handle the exponential factor: $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|^2 \geq \alpha^{2(j_2-j_0)} \cdot \sum_{i=j_0}^{j_2} \|\pi_{\mathcal{F}}^{\equiv i}(\mathbf{x} - \mathbf{v}')\|^2$
- ▶ note that $\sum_{i=j_0}^{j_2} \|\pi_{\mathcal{F}}^{\equiv i}(\cdot)\|^2 = \|\cdot\|^2 - \|\pi_{\mathcal{F}}^{\leq j_0}(\cdot)\|^2 - \|\pi_{\mathcal{F}}^{> j_2}(\cdot)\|^2$
 1. $\|\mathbf{x} - \mathbf{v}'\|^2 \geq \|\mathbf{x} - \mathbf{v}\|^2$ as \mathbf{v} is CV
 2. $\|\pi_{\mathcal{F}}^{\leq j_0}(\mathbf{x} - \mathbf{v}')\| \leq \mu(\mathcal{L}_{j_0-1})$ for free;
want $\mu(\mathcal{L}_{j_0-1}) \leq \frac{1}{4} \lambda_1(E_{\mathcal{F},\alpha}^{(j_1)}(\mathcal{L}))$;
then $\|\pi_{\mathcal{F}}^{\leq j_0}(\mathbf{x} - \mathbf{v}')\| \leq \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|$
 3. hopefully $\|\pi_{\mathcal{F}}^{> j_2}(\mathbf{x} - \mathbf{v}')\| = \|\pi_{\mathcal{F}}^{> j_2}(\mathbf{x} - \mathbf{v})\| (< \frac{1}{\sqrt{2}} \|\mathbf{x} - \mathbf{v}\|)$

Contraction of The Partitioning Embedding: Act 2

- ▶ suffice to find $j_0 \leq j_1$ s.t. $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|$ captures $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$, where $\mathbf{v}' = \mathbf{v}^{(j_0)}$ ($E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{v}')$ is CV to $E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x})$) (w.l.o.g. $\|\pi_{\mathcal{F}}^{\leq j_0}(\mathbf{x} - \mathbf{v}')\| \leq \mu(\mathcal{L}_{j_0-1})$)
- ▶ try to bound $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|^2 = \sum_{i=j_0}^m \alpha^{2(i-j_0)} \|\pi_{\mathcal{F}}^{\equiv i}(\mathbf{x} - \mathbf{v}')\|^2$
- ▶ truncate the sum at some $j_2 \geq j_1$ to handle the exponential factor: $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|^2 \geq \alpha^{2(j_2-j_0)} \cdot \sum_{i=j_0}^{j_2} \|\pi_{\mathcal{F}}^{\equiv i}(\mathbf{x} - \mathbf{v}')\|^2$
- ▶ note that $\sum_{i=j_0}^{j_2} \|\pi_{\mathcal{F}}^{\equiv i}(\cdot)\|^2 = \|\cdot\|^2 - \|\pi_{\mathcal{F}}^{< j_0}(\cdot)\|^2 - \|\pi_{\mathcal{F}}^{> j_2}(\cdot)\|^2$
 1. $\|\mathbf{x} - \mathbf{v}'\|^2 \geq \|\mathbf{x} - \mathbf{v}\|^2$ as \mathbf{v} is CV
 2. $\|\pi_{\mathcal{F}}^{< j_0}(\mathbf{x} - \mathbf{v}')\| \leq \mu(\mathcal{L}_{j_0-1})$ for free;
want $\mu(\mathcal{L}_{j_0-1}) \leq \frac{1}{4} \lambda_1(E_{\mathcal{F},\alpha}^{(j_1)}(\mathcal{L}))$;
then $\|\pi_{\mathcal{F}}^{< j_0}(\mathbf{x} - \mathbf{v}')\| \leq \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|$
 3. hopefully $\|\pi_{\mathcal{F}}^{> j_2}(\mathbf{x} - \mathbf{v}')\| = \|\pi_{\mathcal{F}}^{> j_2}(\mathbf{x} - \mathbf{v})\| (< \frac{1}{\sqrt{2}} \|\mathbf{x} - \mathbf{v}\|)$

Contraction of The Partitioning Embedding: Act 2

- ▶ suffice to find $j_0 \leq j_1$ s.t. $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|$ captures $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$, where $\mathbf{v}' = \mathbf{v}^{(j_0)}$ ($E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{v}')$ is CV to $E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x})$) (w.l.o.g. $\|\pi_{\mathcal{F}}^{\leq j_0}(\mathbf{x} - \mathbf{v}')\| \leq \mu(\mathcal{L}_{j_0-1})$)
- ▶ try to bound $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|^2 = \sum_{i=j_0}^m \alpha^{2(i-j_0)} \|\pi_{\mathcal{F}}^{\equiv i}(\mathbf{x} - \mathbf{v}')\|^2$
- ▶ truncate the sum at some $j_2 \geq j_1$ to handle the exponential factor: $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|^2 \geq \alpha^{2(j_2-j_0)} \cdot \sum_{i=j_0}^{j_2} \|\pi_{\mathcal{F}}^{\equiv i}(\mathbf{x} - \mathbf{v}')\|^2$
- ▶ note that $\sum_{i=j_0}^{j_2} \|\pi_{\mathcal{F}}^{\equiv i}(\cdot)\|^2 = \|\cdot\|^2 - \|\pi_{\mathcal{F}}^{< j_0}(\cdot)\|^2 - \|\pi_{\mathcal{F}}^{> j_2}(\cdot)\|^2$
 1. $\|\mathbf{x} - \mathbf{v}'\|^2 \geq \|\mathbf{x} - \mathbf{v}\|^2$ as \mathbf{v} is CV
 2. $\|\pi_{\mathcal{F}}^{< j_0}(\mathbf{x} - \mathbf{v}')\| \leq \mu(\mathcal{L}_{j_0-1})$ for free;
want $\mu(\mathcal{L}_{j_0-1}) \leq \frac{1}{4} \lambda_1(E_{\mathcal{F},\alpha}^{(j_1)}(\mathcal{L}))$;
then $\|\pi_{\mathcal{F}}^{< j_0}(\mathbf{x} - \mathbf{v}')\| \leq \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|$
 3. hopefully $\|\pi_{\mathcal{F}}^{> j_2}(\mathbf{x} - \mathbf{v}')\| = \|\pi_{\mathcal{F}}^{> j_2}(\mathbf{x} - \mathbf{v})\| (< \frac{1}{\sqrt{2}} \|\mathbf{x} - \mathbf{v}\|)$

Contraction of The Partitioning Embedding: Act 2

- ▶ suffice to find $j_0 \leq j_1$ s.t. $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|$ captures $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$, where $\mathbf{v}' = \mathbf{v}^{(j_0)}$ ($E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{v}')$ is CV to $E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x})$) (w.l.o.g. $\|\pi_{\mathcal{F}}^{\leq j_0}(\mathbf{x} - \mathbf{v}')\| \leq \mu(\mathcal{L}_{j_0-1})$)
- ▶ try to bound $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|^2 = \sum_{i=j_0}^m \alpha^{2(i-j_0)} \|\pi_{\mathcal{F}}^{\equiv i}(\mathbf{x} - \mathbf{v}')\|^2$
- ▶ truncate the sum at some $j_2 \geq j_1$ to handle the exponential factor: $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|^2 \geq \alpha^{2(j_2-j_0)} \cdot \sum_{i=j_0}^{j_2} \|\pi_{\mathcal{F}}^{\equiv i}(\mathbf{x} - \mathbf{v}')\|^2$
- ▶ note that $\sum_{i=j_0}^{j_2} \|\pi_{\mathcal{F}}^{\equiv i}(\cdot)\|^2 = \|\cdot\|^2 - \|\pi_{\mathcal{F}}^{< j_0}(\cdot)\|^2 - \|\pi_{\mathcal{F}}^{> j_2}(\cdot)\|^2$
 1. $\|\mathbf{x} - \mathbf{v}'\|^2 \geq \|\mathbf{x} - \mathbf{v}\|^2$ as \mathbf{v} is CV
 2. $\|\pi_{\mathcal{F}}^{< j_0}(\mathbf{x} - \mathbf{v}')\| \leq \mu(\mathcal{L}_{j_0-1})$ for free;
want $\mu(\mathcal{L}_{j_0-1}) \leq \frac{1}{4} \lambda_1(E_{\mathcal{F},\alpha}^{(j_1)}(\mathcal{L}))$;
then $\|\pi_{\mathcal{F}}^{< j_0}(\mathbf{x} - \mathbf{v}')\| \leq \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|$
 3. hopefully $\|\pi_{\mathcal{F}}^{> j_2}(\mathbf{x} - \mathbf{v}')\| = \|\pi_{\mathcal{F}}^{> j_2}(\mathbf{x} - \mathbf{v})\| (< \frac{1}{\sqrt{2}} \|\mathbf{x} - \mathbf{v}\|)$

Contraction of The Partitioning Embedding: Act 2

- ▶ suffice to find $j_0 \leq j_1$ s.t. $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|$ captures $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$, where $\mathbf{v}' = \mathbf{v}^{(j_0)}$ ($E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{v}')$ is CV to $E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x})$) (w.l.o.g. $\|\pi_{\mathcal{F}}^{\leq j_0}(\mathbf{x} - \mathbf{v}')\| \leq \mu(\mathcal{L}_{j_0-1})$)
- ▶ try to bound $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|^2 = \sum_{i=j_0}^m \alpha^{2(i-j_0)} \|\pi_{\mathcal{F}}^{\equiv i}(\mathbf{x} - \mathbf{v}')\|^2$
- ▶ truncate the sum at some $j_2 \geq j_1$ to handle the exponential factor: $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|^2 \geq \alpha^{2(j_2-j_0)} \cdot \sum_{i=j_0}^{j_2} \|\pi_{\mathcal{F}}^{\equiv i}(\mathbf{x} - \mathbf{v}')\|^2$
- ▶ note that $\sum_{i=j_0}^{j_2} \|\pi_{\mathcal{F}}^{\equiv i}(\cdot)\|^2 = \|\cdot\|^2 - \|\pi_{\mathcal{F}}^{< j_0}(\cdot)\|^2 - \|\pi_{\mathcal{F}}^{> j_2}(\cdot)\|^2$
 1. $\|\mathbf{x} - \mathbf{v}'\|^2 \geq \|\mathbf{x} - \mathbf{v}\|^2$ as \mathbf{v} is CV
 2. $\|\pi_{\mathcal{F}}^{< j_0}(\mathbf{x} - \mathbf{v}')\| \leq \mu(\mathcal{L}_{j_0-1})$ for free;
want $\mu(\mathcal{L}_{j_0-1}) \leq \frac{1}{4} \lambda_1(E_{\mathcal{F},\alpha}^{(j_1)}(\mathcal{L}))$;
then $\|\pi_{\mathcal{F}}^{< j_0}(\mathbf{x} - \mathbf{v}')\| \leq \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|$
 3. hopefully $\|\pi_{\mathcal{F}}^{> j_2}(\mathbf{x} - \mathbf{v}')\| = \|\pi_{\mathcal{F}}^{> j_2}(\mathbf{x} - \mathbf{v})\| (< \frac{1}{\sqrt{2}} \|\mathbf{x} - \mathbf{v}\|)$

Contraction of The Partitioning Embedding: Act 2.5

- ▶ “hopefully $\|\pi_{\mathcal{F}}^{>j_2}(\mathbf{x} - \mathbf{v}')\| = \|\pi_{\mathcal{F}}^{>j_2}(\mathbf{x} - \mathbf{v})\|$ ”
 - ▶ suffice to show $\pi_{\mathcal{F}}^{>j_2}(\mathbf{v}') = \pi_{\mathcal{F}}^{>j_2}(\mathbf{v})$, or $E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathbf{v}') = E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathbf{v})$
 - ▶ if not, they are distant: $\|E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathbf{v} - \mathbf{v}')\| \geq \lambda_1(E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathcal{L}))$
 - ▶ note that by algebra, $\|E_{\mathcal{F},\alpha}^{(j_0)}(\cdot)\| \geq \alpha^{j_2+1-j_0} \|E_{\mathcal{F},\alpha}^{(j_2+1)}(\cdot)\|$
 - ▶ hence

$$\begin{aligned}\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\| &> \frac{1}{\sqrt{2}} \|\mathbf{x} - \mathbf{v}\| \geq \frac{1}{\sqrt{2}} \|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v})\| \\ &\geq \frac{1}{2\sqrt{2}} \|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{v} - \mathbf{v}')\| \\ &\geq \frac{\alpha^{j_2+1-j_0}}{2\sqrt{2}} \lambda_1(E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathcal{L}))\end{aligned}$$

- ▶ on the other hand $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\| \leq \mu(\mathcal{L}_{j_1})$;
so want $\mu(\mathcal{L}_{j_1}) \leq \frac{\alpha^{j_2+1-j_0}}{2\sqrt{2}} \lambda_1(E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathcal{L}))$ for contradiction

Contraction of The Partitioning Embedding: Act 2.5

- ▶ “hopefully $\|\pi_{\mathcal{F}}^{>j_2}(\mathbf{x} - \mathbf{v}')\| = \|\pi_{\mathcal{F}}^{>j_2}(\mathbf{x} - \mathbf{v})\|$ ”
 - ▶ suffice to show $\pi_{\mathcal{F}}^{>j_2}(\mathbf{v}') = \pi_{\mathcal{F}}^{>j_2}(\mathbf{v})$, or $E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathbf{v}') = E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathbf{v})$
 - ▶ if not, they are distant: $\|E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathbf{v} - \mathbf{v}')\| \geq \lambda_1(E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathcal{L}))$
 - ▶ note that by algebra, $\|E_{\mathcal{F},\alpha}^{(j_0)}(\cdot)\| \geq \alpha^{j_2+1-j_0} \|E_{\mathcal{F},\alpha}^{(j_2+1)}(\cdot)\|$
 - ▶ hence

$$\begin{aligned}\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\| &> \frac{1}{\sqrt{2}} \|\mathbf{x} - \mathbf{v}\| \geq \frac{1}{\sqrt{2}} \|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v})\| \\ &\geq \frac{1}{2\sqrt{2}} \|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{v} - \mathbf{v}')\| \\ &\geq \frac{\alpha^{j_2+1-j_0}}{2\sqrt{2}} \lambda_1(E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathcal{L}))\end{aligned}$$

- ▶ on the other hand $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\| \leq \mu(\mathcal{L}_{j_1})$;
so want $\mu(\mathcal{L}_{j_1}) \leq \frac{\alpha^{j_2+1-j_0}}{2\sqrt{2}} \lambda_1(E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathcal{L}))$ for contradiction

Contraction of The Partitioning Embedding: Act 2.5

- ▶ “hopefully $\|\pi_{\mathcal{F}}^{>j_2}(\mathbf{x} - \mathbf{v}')\| = \|\pi_{\mathcal{F}}^{>j_2}(\mathbf{x} - \mathbf{v})\|$ ”
 - ▶ suffice to show $\pi_{\mathcal{F}}^{>j_2}(\mathbf{v}') = \pi_{\mathcal{F}}^{>j_2}(\mathbf{v})$, or $E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathbf{v}') = E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathbf{v})$
 - ▶ if not, they are distant: $\|E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathbf{v} - \mathbf{v}')\| \geq \lambda_1(E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathcal{L}))$
 - ▶ note that by algebra, $\|E_{\mathcal{F},\alpha}^{(j_0)}(\cdot)\| \geq \alpha^{j_2+1-j_0} \|E_{\mathcal{F},\alpha}^{(j_2+1)}(\cdot)\|$
 - ▶ hence

$$\begin{aligned}\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\| &> \frac{1}{\sqrt{2}} \|\mathbf{x} - \mathbf{v}\| \geq \frac{1}{\sqrt{2}} \|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v})\| \\ &\geq \frac{1}{2\sqrt{2}} \|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{v} - \mathbf{v}')\| \\ &\geq \frac{\alpha^{j_2+1-j_0}}{2\sqrt{2}} \lambda_1(E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathcal{L}))\end{aligned}$$

- ▶ on the other hand $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\| \leq \mu(\mathcal{L}_{j_1})$;
so want $\mu(\mathcal{L}_{j_1}) \leq \frac{\alpha^{j_2+1-j_0}}{2\sqrt{2}} \lambda_1(E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathcal{L}))$ for contradiction

Contraction of The Partitioning Embedding: Act 2.5

- ▶ “hopefully $\|\pi_{\mathcal{F}}^{>j_2}(\mathbf{x} - \mathbf{v}')\| = \|\pi_{\mathcal{F}}^{>j_2}(\mathbf{x} - \mathbf{v})\|$ ”
 - ▶ suffice to show $\pi_{\mathcal{F}}^{>j_2}(\mathbf{v}') = \pi_{\mathcal{F}}^{>j_2}(\mathbf{v})$, or $E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathbf{v}') = E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathbf{v})$
 - ▶ if not, they are distant: $\|E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathbf{v} - \mathbf{v}')\| \geq \lambda_1(E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathcal{L}))$
 - ▶ note that by algebra, $\|E_{\mathcal{F},\alpha}^{(j_0)}(\cdot)\| \geq \alpha^{j_2+1-j_0} \|E_{\mathcal{F},\alpha}^{(j_2+1)}(\cdot)\|$
 - ▶ hence

$$\begin{aligned}\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\| &> \frac{1}{\sqrt{2}} \|\mathbf{x} - \mathbf{v}\| \geq \frac{1}{\sqrt{2}} \|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v})\| \\ &\geq \frac{1}{2\sqrt{2}} \|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{v} - \mathbf{v}')\| \\ &\geq \frac{\alpha^{j_2+1-j_0}}{2\sqrt{2}} \lambda_1(E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathcal{L}))\end{aligned}$$

- ▶ on the other hand $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\| \leq \mu(\mathcal{L}_{j_1})$;
so want $\mu(\mathcal{L}_{j_1}) \leq \frac{\alpha^{j_2+1-j_0}}{2\sqrt{2}} \lambda_1(E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathcal{L}))$ for contradiction

Contraction of The Partitioning Embedding: Act 3

- ▶ already manage to capture $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$, even the entire $\|\mathbf{x} - \mathbf{v}\|$, by $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|$?
- ▶ need to consider saturation of HR10, i.e., can only use $\min(\|E_{\mathcal{F},\alpha}^{(j)}(\mathbf{x} - \mathbf{v}^{(j)})\|, \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j)}(\mathcal{L})))$ for each j
- ▶ for $E_{\mathcal{F},\alpha}^{(>j_1)}$, they still capture $\|\pi_{\mathcal{F}}^{>j_1}(\mathbf{x} - \mathbf{v})\|$ as long as $\mu(\mathcal{L}_j) \leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j)}(\mathcal{L}))$
- ▶ for $E_{\mathcal{F},\alpha}^{(j_0)}$ (to capture $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$), want $\mu(\mathcal{L}_{j_1}) \leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j_0)}(\mathcal{L}))$

Finally we have $\Theta(1)$ contraction (considering saturation of HR10), and thus $\Theta(1)$ distortion of the partitioning embedding, and thus $O(\sqrt{n \log n})$ overall distortion after composing with the HR10 embedding.

Contraction of The Partitioning Embedding: Act 3

- ▶ already manage to capture $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$, even the entire $\|\mathbf{x} - \mathbf{v}\|$, by $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|$?
- ▶ need to consider saturation of HR10, i.e., can only use $\min(\|E_{\mathcal{F},\alpha}^{(j)}(\mathbf{x} - \mathbf{v}^{(j)})\|, \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j)}(\mathcal{L})))$ for each j
- ▶ for $E_{\mathcal{F},\alpha}^{(>j_1)}$, they still capture $\|\pi_{\mathcal{F}}^{>j_1}(\mathbf{x} - \mathbf{v})\|$ as long as $\mu(\mathcal{L}_j) \leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j)}(\mathcal{L}))$
- ▶ for $E_{\mathcal{F},\alpha}^{(j_0)}$ (to capture $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$), want $\mu(\mathcal{L}_{j_1}) \leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j_0)}(\mathcal{L}))$

Finally we have $\Theta(1)$ contraction (considering saturation of HR10), and thus $\Theta(1)$ distortion of the partitioning embedding, and thus $O(\sqrt{n \log n})$ overall distortion after composing with the HR10 embedding.

Contraction of The Partitioning Embedding: Act 3

- ▶ already manage to capture $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$, even the entire $\|\mathbf{x} - \mathbf{v}\|$, by $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|$?
- ▶ need to consider saturation of HR10, i.e., can only use $\min(\|E_{\mathcal{F},\alpha}^{(j)}(\mathbf{x} - \mathbf{v}^{(j)})\|, \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j)}(\mathcal{L})))$ for each j
- ▶ for $E_{\mathcal{F},\alpha}^{(>j_1)}$, they still capture $\|\pi_{\mathcal{F}}^{>j_1}(\mathbf{x} - \mathbf{v})\|$ as long as $\mu(\mathcal{L}_j) \leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j)}(\mathcal{L}))$
- ▶ for $E_{\mathcal{F},\alpha}^{(j_0)}$ (to capture $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$), want $\mu(\mathcal{L}_{j_1}) \leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j_0)}(\mathcal{L}))$

Finally we have $\Theta(1)$ contraction (considering saturation of HR10), and thus $\Theta(1)$ distortion of the partitioning embedding, and thus $O(\sqrt{n \log n})$ overall distortion after composing with the HR10 embedding.

Contraction of The Partitioning Embedding: Act 3

- ▶ already manage to capture $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$, even the entire $\|\mathbf{x} - \mathbf{v}\|$, by $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|$?
- ▶ need to consider saturation of HR10, i.e., can only use $\min(\|E_{\mathcal{F},\alpha}^{(j)}(\mathbf{x} - \mathbf{v}^{(j)})\|, \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j)}(\mathcal{L})))$ for each j
- ▶ for $E_{\mathcal{F},\alpha}^{(>j_1)}$, they still capture $\|\pi_{\mathcal{F}}^{>j_1}(\mathbf{x} - \mathbf{v})\|$ as long as $\mu(\mathcal{L}_j) \leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j)}(\mathcal{L}))$
- ▶ for $E_{\mathcal{F},\alpha}^{(j_0)}$ (to capture $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$), want $\mu(\mathcal{L}_{j_1}) \leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j_0)}(\mathcal{L}))$

Finally we have $\Theta(1)$ contraction (considering saturation of HR10), and thus $\Theta(1)$ distortion of the partitioning embedding, and thus $O(\sqrt{n \log n})$ overall distortion after composing with the HR10 embedding.

Contraction of The Partitioning Embedding: Act 3

- ▶ already manage to capture $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$, even the entire $\|\mathbf{x} - \mathbf{v}\|$, by $\|E_{\mathcal{F},\alpha}^{(j_0)}(\mathbf{x} - \mathbf{v}')\|$?
- ▶ need to consider saturation of HR10, i.e., can only use $\min(\|E_{\mathcal{F},\alpha}^{(j)}(\mathbf{x} - \mathbf{v}^{(j)})\|, \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j)}(\mathcal{L})))$ for each j
- ▶ for $E_{\mathcal{F},\alpha}^{(>j_1)}$, they still capture $\|\pi_{\mathcal{F}}^{>j_1}(\mathbf{x} - \mathbf{v})\|$ as long as $\mu(\mathcal{L}_j) \leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j)}(\mathcal{L}))$
- ▶ for $E_{\mathcal{F},\alpha}^{(j_0)}$ (to capture $\|\pi_{\mathcal{F}}^{\leq j_1}(\mathbf{x} - \mathbf{v})\|$), want $\mu(\mathcal{L}_{j_1}) \leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j_0)}(\mathcal{L}))$

Finally we have $\Theta(1)$ contraction (considering saturation of HR10), and thus $\Theta(1)$ distortion of the partitioning embedding, and thus $O(\sqrt{n \log n})$ overall distortion after composing with the HR10 embedding.

Good Filtration

During the contraction proof we assumed:

$$\begin{aligned}\mu(\mathcal{L}_j) &\leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j)}(\mathcal{L})), \quad \mu(\mathcal{L}_{j_0-1}) \leq \frac{1}{4} \lambda_1(E_{\mathcal{F},\alpha}^{(j_1)}(\mathcal{L})), \\ \mu(\mathcal{L}_{j_1}) &\leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j_0)}(\mathcal{L})), \quad \mu(\mathcal{L}_{j_1}) \leq \frac{\alpha^{j_2+1-j_0}}{2\sqrt{2}} \lambda_1(E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathcal{L})).\end{aligned}$$

These reduce to (β, γ) -filtration:

- ▶ $\mu(\mathcal{L}_j/\mathcal{L}_{j-1}) \leq \beta \cdot \lambda_1(\mathcal{L}_j/\mathcal{L}_{j-1})$
- ▶ $\lambda_1(\mathcal{L}_{j+1}/\mathcal{L}_j) \geq \gamma \cdot \lambda_1(\mathcal{L}_j/\mathcal{L}_{j-1})$
- ▶ i.e., separated scales!

(along with mild enough compression $\alpha \geq 1/\gamma$)

$(\gamma\sqrt{n}, \gamma)$ -filtration can be achieved using *Korkine–Zolotarev basis*.
The idea is intuitive: to group shortest bases into one sublattice until reaching a next scale that is γ times larger.

Good Filtration

During the contraction proof we assumed:

$$\mu(\mathcal{L}_j) \leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j)}(\mathcal{L})), \quad \mu(\mathcal{L}_{j_0-1}) \leq \frac{1}{4} \lambda_1(E_{\mathcal{F},\alpha}^{(j_1)}(\mathcal{L})),$$
$$\mu(\mathcal{L}_{j_1}) \leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j_0)}(\mathcal{L})), \quad \mu(\mathcal{L}_{j_1}) \leq \frac{\alpha^{j_2+1-j_0}}{2\sqrt{2}} \lambda_1(E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathcal{L})).$$

These reduce to (β, γ) -filtration:

- ▶ $\mu(\mathcal{L}_j/\mathcal{L}_{j-1}) \leq \beta \cdot \lambda_1(\mathcal{L}_j/\mathcal{L}_{j-1})$
- ▶ $\lambda_1(\mathcal{L}_{j+1}/\mathcal{L}_j) \geq \gamma \cdot \lambda_1(\mathcal{L}_j/\mathcal{L}_{j-1})$
- ▶ i.e., separated scales!

(along with mild enough compression $\alpha \geq 1/\gamma$)

$(\gamma\sqrt{n}, \gamma)$ -filtration can be achieved using *Korkine–Zolotarev basis*.
The idea is intuitive: to group shortest bases into one sublattice until reaching a next scale that is γ times larger.

Good Filtration

During the contraction proof we assumed:

$$\begin{aligned}\mu(\mathcal{L}_j) &\leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j)}(\mathcal{L})), \quad \mu(\mathcal{L}_{j_0-1}) \leq \frac{1}{4} \lambda_1(E_{\mathcal{F},\alpha}^{(j_1)}(\mathcal{L})), \\ \mu(\mathcal{L}_{j_1}) &\leq \text{poly}(n) \cdot \lambda_1(E_{\mathcal{F},\alpha}^{(j_0)}(\mathcal{L})), \quad \mu(\mathcal{L}_{j_1}) \leq \frac{\alpha^{j_2+1-j_0}}{2\sqrt{2}} \lambda_1(E_{\mathcal{F},\alpha}^{(j_2+1)}(\mathcal{L})).\end{aligned}$$

These reduce to (β, γ) -filtration:

- ▶ $\mu(\mathcal{L}_j/\mathcal{L}_{j-1}) \leq \beta \cdot \lambda_1(\mathcal{L}_j/\mathcal{L}_{j-1})$
- ▶ $\lambda_1(\mathcal{L}_{j+1}/\mathcal{L}_j) \geq \gamma \cdot \lambda_1(\mathcal{L}_j/\mathcal{L}_{j-1})$
- ▶ i.e., separated scales!

(along with mild enough compression $\alpha \geq 1/\gamma$)

$(\gamma\sqrt{n}, \gamma)$ -filtration can be achieved using *Korkine–Zolotarev basis*.
The idea is intuitive: to group shortest bases into one sublattice until reaching a next scale that is γ times larger.

Open Questions, Extended

- ▶ Finite dimensional embeddings
 - ▶ via discretization?
 - ▶ trade-off between distortion and dimensionality
- ▶ Efficiently computable embeddings
 - ▶ Korkine–Zolotarev basis is hard to compute
 - ▶ necessary for algorithmic applications, if any :|
- ▶ Lattice-specific distortion upper bound
 - ▶ e.g. $\Theta(1)$ distortion for \mathbb{Z}^n
 - ▶ potentially involving $\lambda_1(\mathcal{L})$ and $\mu(\mathcal{L})$
 - ▶ lower bound: $\Omega(\lambda_1(\mathcal{L}^*) \cdot \mu(\mathcal{L}) / \sqrt{n}) \geq \Omega\left(\frac{\lambda_1(\mathcal{L}^*)}{\mu(\mathcal{L}^*)} \cdot \sqrt{n}\right)$
 - ▶ by having “adaptive” compression factor α ?
- ▶ Embedding into L_p instead of L_2
 - ▶ for L_1 , same lower bound
 - ▶ for finite dimensionality we can embed from ℓ_2 into ℓ_p

Open Questions, Extended

- ▶ Finite dimensional embeddings
 - ▶ via discretization?
 - ▶ trade-off between distortion and dimensionality
- ▶ Efficiently computable embeddings
 - ▶ Korkine–Zolotarev basis is hard to compute
 - ▶ necessary for algorithmic applications, if any :|
- ▶ Lattice-specific distortion upper bound
 - ▶ e.g. $\Theta(1)$ distortion for \mathbb{Z}^n
 - ▶ potentially involving $\lambda_1(\mathcal{L})$ and $\mu(\mathcal{L})$
 - ▶ lower bound: $\Omega(\lambda_1(\mathcal{L}^*) \cdot \mu(\mathcal{L}) / \sqrt{n}) \geq \Omega\left(\frac{\lambda_1(\mathcal{L}^*)}{\mu(\mathcal{L}^*)} \cdot \sqrt{n}\right)$
 - ▶ by having “adaptive” compression factor α ?
- ▶ Embedding into L_p instead of L_2
 - ▶ for L_1 , same lower bound
 - ▶ for finite dimensionality we can embed from ℓ_2 into ℓ_p

Open Questions, Extended

- ▶ Finite dimensional embeddings
 - ▶ via discretization?
 - ▶ trade-off between distortion and dimensionality
- ▶ Efficiently computable embeddings
 - ▶ Korkine–Zolotarev basis is hard to compute
 - ▶ necessary for algorithmic applications, if any :|
- ▶ Lattice-specific distortion upper bound
 - ▶ e.g. $\Theta(1)$ distortion for \mathbb{Z}^n
 - ▶ potentially involving $\lambda_1(\mathcal{L})$ and $\mu(\mathcal{L})$
 - ▶ lower bound: $\Omega(\lambda_1(\mathcal{L}^*) \cdot \mu(\mathcal{L}) / \sqrt{n}) \geq \Omega\left(\frac{\lambda_1(\mathcal{L}^*)}{\mu(\mathcal{L}^*)} \cdot \sqrt{n}\right)$
 - ▶ by having “adaptive” compression factor α ?
- ▶ Embedding into L_p instead of L_2
 - ▶ for L_1 , same lower bound
 - ▶ for finite dimensionality we can embed from ℓ_2 into ℓ_p

Open Questions, Extended

- ▶ Finite dimensional embeddings
 - ▶ via discretization?
 - ▶ trade-off between distortion and dimensionality
- ▶ Efficiently computable embeddings
 - ▶ Korkine–Zolotarev basis is hard to compute
 - ▶ necessary for algorithmic applications, if any :|
- ▶ Lattice-specific distortion upper bound
 - ▶ e.g. $\Theta(1)$ distortion for \mathbb{Z}^n
 - ▶ potentially involving $\lambda_1(\mathcal{L})$ and $\mu(\mathcal{L})$
 - ▶ lower bound: $\Omega(\lambda_1(\mathcal{L}^*) \cdot \mu(\mathcal{L}) / \sqrt{n}) \geq \Omega\left(\frac{\lambda_1(\mathcal{L}^*)}{\mu(\mathcal{L}^*)} \cdot \sqrt{n}\right)$
 - ▶ by having “adaptive” compression factor α ?
- ▶ Embedding into L_p instead of L_2
 - ▶ for L_1 , same lower bound
 - ▶ for finite dimensionality we can embed from ℓ_2 into ℓ_p