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Notations & Definitions

▶ lattice L = BZn

▶ minimum distance λ1(L) := min{r > 0 : rank(L ∩ Br ) ≥ 1}
▶ covering radius µ(L) := maxx∈span(L) dist(x,L)
▶ quotient lattice L/L′ := π⊥

span(L′)(L), for L
′ ⊂ L

▶ (flat) torus Rn/L
▶ torus metric: distRn/L(x+ L, y + L) = dist(x− y,L)

(write distRn/L(x, y) for simplicity)
▶ distortion of (injective) embedding f : expansion/contraction;

expansion: supx,y
dist(f (x),f (y))
distRn/L(x,y) , contraction: inf . . .

▶ Goal: embed Rn/L into L2, with distortion O(
√
n log n)



Notations & Definitions

▶ lattice L = BZn

▶ minimum distance λ1(L) := min{r > 0 : rank(L ∩ Br ) ≥ 1}
▶ covering radius µ(L) := maxx∈span(L) dist(x,L)
▶ quotient lattice L/L′ := π⊥

span(L′)(L), for L
′ ⊂ L

▶ (flat) torus Rn/L
▶ torus metric: distRn/L(x+ L, y + L) = dist(x− y,L)

(write distRn/L(x, y) for simplicity)
▶ distortion of (injective) embedding f : expansion/contraction;

expansion: supx,y
dist(f (x),f (y))
distRn/L(x,y) , contraction: inf . . .

▶ Goal: embed Rn/L into L2, with distortion O(
√
n log n)



Notations & Definitions

▶ lattice L = BZn

▶ minimum distance λ1(L) := min{r > 0 : rank(L ∩ Br ) ≥ 1}
▶ covering radius µ(L) := maxx∈span(L) dist(x,L)
▶ quotient lattice L/L′ := π⊥

span(L′)(L), for L
′ ⊂ L

▶ (flat) torus Rn/L
▶ torus metric: distRn/L(x+ L, y + L) = dist(x− y,L)

(write distRn/L(x, y) for simplicity)
▶ distortion of (injective) embedding f : expansion/contraction;

expansion: supx,y
dist(f (x),f (y))
distRn/L(x,y) , contraction: inf . . .

▶ Goal: embed Rn/L into L2, with distortion O(
√
n log n)



Notations & Definitions

▶ lattice L = BZn

▶ minimum distance λ1(L) := min{r > 0 : rank(L ∩ Br ) ≥ 1}
▶ covering radius µ(L) := maxx∈span(L) dist(x,L)
▶ quotient lattice L/L′ := π⊥

span(L′)(L), for L
′ ⊂ L

▶ (flat) torus Rn/L
▶ torus metric: distRn/L(x+ L, y + L) = dist(x− y,L)

(write distRn/L(x, y) for simplicity)
▶ distortion of (injective) embedding f : expansion/contraction;

expansion: supx,y
dist(f (x),f (y))
distRn/L(x,y) , contraction: inf . . .

▶ Goal: embed Rn/L into L2, with distortion O(
√
n log n)



Notations & Definitions

▶ lattice L = BZn

▶ minimum distance λ1(L) := min{r > 0 : rank(L ∩ Br ) ≥ 1}
▶ covering radius µ(L) := maxx∈span(L) dist(x,L)
▶ quotient lattice L/L′ := π⊥

span(L′)(L), for L
′ ⊂ L

▶ (flat) torus Rn/L
▶ torus metric: distRn/L(x+ L, y + L) = dist(x− y,L)

(write distRn/L(x, y) for simplicity)
▶ distortion of (injective) embedding f : expansion/contraction;

expansion: supx,y
dist(f (x),f (y))
distRn/L(x,y) , contraction: inf . . .

▶ Goal: embed Rn/L into L2, with distortion O(
√
n log n)



Notations & Definitions

▶ lattice L = BZn

▶ minimum distance λ1(L) := min{r > 0 : rank(L ∩ Br ) ≥ 1}
▶ covering radius µ(L) := maxx∈span(L) dist(x,L)
▶ quotient lattice L/L′ := π⊥

span(L′)(L), for L
′ ⊂ L

▶ (flat) torus Rn/L
▶ torus metric: distRn/L(x+ L, y + L) = dist(x− y,L)

(write distRn/L(x, y) for simplicity)
▶ distortion of (injective) embedding f : expansion/contraction;

expansion: supx,y
dist(f (x),f (y))
distRn/L(x,y) , contraction: inf . . .

▶ Goal: embed Rn/L into L2, with distortion O(
√
n log n)



The HR10 Embedding

The HR10 Embedding HL,k(x) maps x ∈ Rn/L to a k-tuple (in ℓ2)
of Gaussians centered at x with certain variances and coefficients
(determined by the “scale” λ1(L)).

Wrapping the Gaussians:

▶ strictly speaking inputs to HL,k should be x+ L ∈ Rn/L
▶ consequently for HL,k to be well defined, the output Gaussians

should be “wrapped around,” i.e., be the sum of all copies
centered at x+ L, and live in L2(Rn/L) instead of L2(Rn)
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Distortion of The HR10 Embedding

HL,k has distortion O(
√
nk):

▶ expansion: ≤
√
πk

▶ contraction: ≥
√
cH/n, where cH is absolute constant

▶ caveat for contraction: saturation at 2k−1 λ1(L), i.e., only
have contraction w.r.t. min

(
distRn/L(x, y), 2

k−1 λ1(L)
)

Choices of k in HR10:

▶ k = O(log µ(L)
λ1(L)): distortion O

(√
n log µ(L)

λ1(L)

)
▶ k = O(log n): distortion O(

√
n log n), while requiring

µ(L) ≤ poly(n) · λ1(L)
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The Partitioning Embedding

▶ given good filtration F : {⃗0} = L0 ⊂ L1 ⊂ · · · ⊂ Lm = L
▶ define projections π= j

F := πspan(Lj/Lj−1) for j ∈ [m]

(and analogously π≥ j
F , π> j

F , π< j
F , π≤ j

F );
this gives an orthogonal decomposition of the entire space

▶ define the compressed projections E
(j)
F ,α :=

∑m
i=j α

i−jπ= i
F for

j ∈ [m], and the overall partitioning embedding EF ,α to be

the tuple (E
(1)
F ,α, . . . ,E

(m)
F ,α) (in ℓ2)

▶ note that E
(j)
F ,α(L) is not dense as long as α > 0, and thus

E
(j)
F ,α(R

n/L) gives a valid torus
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Where does Distortion Come from?

▶ want to embed distRn/L(x, y) = dist(x− y,L)
(for simplicity suppose y = 0⃗)

▶ let v ∈ L be a closest lattice vector (CV) to x;
then dist(x,L) = ∥x− v∥

▶ want dist(E
(j)
F ,α(x),E

(j)
F ,α(L)) = ∥E

(j)
F ,α(x− v)∥ so that they

add up to Θ(1) · ∥x− v∥ and there is constant distortion

▶ however E
(j)
F ,α(v) is not necessarily CV to E

(j)
F ,α(x) due to:

1. projection (left figure: project onto y -direction)
2. compression (right figure: compress y -direction by α = 1/2)

both distorting the geometry

← →



Where does Distortion Come from?

▶ want to embed distRn/L(x, y) = dist(x− y,L)
(for simplicity suppose y = 0⃗)

▶ let v ∈ L be a closest lattice vector (CV) to x;
then dist(x,L) = ∥x− v∥

▶ want dist(E
(j)
F ,α(x),E

(j)
F ,α(L)) = ∥E

(j)
F ,α(x− v)∥ so that they

add up to Θ(1) · ∥x− v∥ and there is constant distortion

▶ however E
(j)
F ,α(v) is not necessarily CV to E

(j)
F ,α(x) due to:

1. projection (left figure: project onto y -direction)
2. compression (right figure: compress y -direction by α = 1/2)

both distorting the geometry

← →



Where does Distortion Come from?

▶ want to embed distRn/L(x, y) = dist(x− y,L)
(for simplicity suppose y = 0⃗)

▶ let v ∈ L be a closest lattice vector (CV) to x;
then dist(x,L) = ∥x− v∥

▶ want dist(E
(j)
F ,α(x),E

(j)
F ,α(L)) = ∥E

(j)
F ,α(x− v)∥ so that they

add up to Θ(1) · ∥x− v∥ and there is constant distortion

▶ however E
(j)
F ,α(v) is not necessarily CV to E

(j)
F ,α(x) due to:

1. projection (left figure: project onto y -direction)
2. compression (right figure: compress y -direction by α = 1/2)

both distorting the geometry

← →



Expansion of The Partitioning Embedding

Although CV could change in each compressed projection, this only
leads to shorter embedded distance and does not harm expansion.

The expansion is easily ≤
√

1
1−α2 thanks to the geometric series

(and square root due to using ℓ2 tuple).



Contraction of The Partitioning Embedding: Act 1

▶ want to prove constant contraction

▶ let j1 be the last index where CV changes

▶ we know the part ∥π> j1
F (x− v)∥ is “captured” by E

(> j1)
F ,α

▶ if this part is already a constant fraction of ∥x− v∥ then we
get constant contraction

▶ so from now on suppose, say, ∥π≤ j1
F (x− v)∥2 > 1

2∥x− v∥2

▶ we also know ∥E (j1)
F ,α(x− v)∥ ≥ 1

2 λ1(E
(j1)
F ,α(L)), due to change

of CV (by triangle ineq., ∥E (j1)
F ,α(v − v(j1))∥ ≤ 2∥E (j1)

F ,α(x− v)∥,
where E

(j0)
F ,α(v

(j)) is CV to E
(j)
F ,α(x))
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Contraction of The Partitioning Embedding: Act 2

▶ suffice to find j0 ≤ j1 s.t. ∥E (j0)
F ,α(x− v′)∥ captures

∥π≤ j1
F (x− v)∥, where v′ = v(j0) (E

(j0)
F ,α(v

′) is CV to E
(j0)
F ,α(x))

(w.l.o.g. ∥π< j0
F (x− v′)∥ ≤ µ(Lj0−1))

▶ try to bound ∥E (j0)
F ,α(x− v′)∥2 =

∑m
i=j0

α2(i−j0)∥π= i
F (x− v′)∥2

▶ truncate the sum at some j2 ≥ j1 to handle the exponential

factor: ∥E (j0)
F ,α(x− v′)∥2 ≥ α2(j2−j0) ·

∑j2
i=j0
∥π= i

F (x− v′)∥2

▶ note that
∑j2

i=j0
∥π= i

F (·)∥2 = ∥·∥2 − ∥π< j0
F (·)∥2 − ∥π> j2

F (·)∥2

1. ∥x− v′∥2 ≥ ∥x− v∥2 as v is CV

2. ∥π< j0
F (x− v′)∥ ≤ µ(Lj0−1) for free;

want µ(Lj0−1) ≤ 1
4 λ1(E

(j1)
F,α(L));

then ∥π< j0
F (x− v′)∥ ≤ 1

2∥x− v∥
3. hopefully ∥π> j2

F (x− v′)∥ = ∥π> j2
F (x− v)∥ (< 1√

2
∥x− v∥)
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Contraction of The Partitioning Embedding: Act 3

▶ already manage to capture ∥π≤ j1
F (x− v)∥, even the entire

∥x− v∥, by ∥E (j0)
F ,α(x− v′)∥?

▶ need to consider saturation of HR10, i.e., can only use

min
(
∥E (j)

F ,α(x− v(j))∥, poly(n) · λ1(E
(j)
F ,α(L))

)
for each j

▶ for E
(> j1)
F ,α , they still capture ∥π> j1

F (x− v)∥ as long as

µ(Lj) ≤ poly(n) · λ1(E
(j)
F ,α(L))

▶ for E
(j0)
F ,α (to capture ∥π≤ j1

F (x− v)∥), want
µ(Lj1) ≤ poly(n) · λ1(E

(j0)
F ,α(L))

Finally we have Θ(1) contraction (considering saturation of HR10),
and thus Θ(1) distortion of the partitioning embedding,
and thus O(

√
n log n) overall distortion after composing with the

HR10 embedding.
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Good Filtration

During the contraction proof we assumed:

µ(Lj) ≤ poly(n) · λ1(E
(j)
F ,α(L)), µ(Lj0−1) ≤ 1

4 λ1(E
(j1)
F ,α(L)),

µ(Lj1) ≤ poly(n) · λ1(E
(j0)
F ,α(L)), µ(Lj1) ≤

αj2+1−j0

2
√
2

λ1(E
(j2+1)
F ,α (L)).

These reduce to (β, γ)-filtration:

▶ µ(Lj/Lj−1) ≤ β · λ1(Lj/Lj−1)

▶ λ1(Lj+1/Lj) ≥ γ · λ1(Lj/Lj−1)

▶ i.e., separated scales!

(along with mild enough compression α ≥ 1/γ)

(γ
√
n, γ)-filtration can be achieved using Korkine–Zolotarev basis.

The idea is intuitive: to group shortest bases into one sublattice
until reaching a next scale that is γ times larger.
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Open Questions, Extended

▶ Finite dimensional embeddings
▶ via discretization?
▶ trade-off between distortion and dimensionality

▶ Efficiently computable embeddings
▶ Korkine–Zolotarev basis is hard to compute
▶ necessary for algorithmic applications, if any :|

▶ Lattice-specific distortion upper bound
▶ e.g. Θ(1) distortion for Zn

▶ potentially involving λ1(L) and µ(L)
▶ lower bound: Ω(λ1(L∗) · µ(L)/

√
n) ≥ Ω(λ1(L∗)

µ(L∗) ·
√
n)

▶ by having “adaptive” compression factor α?

▶ Embedding into Lp instead of L2
▶ for L1, same lower bound
▶ for finite dimensionality we can embed from ℓ2 into ℓp
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