
The Shift PUF: Technique for Squaring the Machine Learning
Complexity of Arbiter-based PUFs

Yi Tang 1 Donghang Wu 2 Yongzhi Cao 2 Marian Margraf 3

1University of Michigan

2Peking University

3Freie Universität Berlin

CASES 2020 WiP

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 1 / 13



Physically Unclonable Functions (PUFs)

Hardware cryptographic identification primitive;

Exploiting inevitable manufacturing variations;

Hence “physically unclonable.”

A PUF Instance is identified by its behavior as a (probabilistic)
mapping from inputs (challenges) to outputs (responses).

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 2 / 13



Physically Unclonable Functions (PUFs)

Hardware cryptographic identification primitive;

Exploiting inevitable manufacturing variations;

Hence “physically unclonable.”

A PUF Instance is identified by its behavior as a (probabilistic)
mapping from inputs (challenges) to outputs (responses).

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 2 / 13



Arbiter PUFs (APUFs)

1 Challenge decides the paths: either parallel or crossing.

Two signals are triggered simultaneously and propagate along the
decided paths.

Arbiter judges the race and yields the result as response.

The inevitable manufacturing variations of the signal delays lead to
unique challenge-response behaviors.

1
Figure from Georg T. Becker, “The Gap Between Promise and Reality: On the Insecurity of XOR Arbiter PUFs”, 2015.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 3 / 13



Arbiter PUFs (APUFs)

1 Challenge decides the paths: either parallel or crossing.

Two signals are triggered simultaneously and propagate along the
decided paths.

Arbiter judges the race and yields the result as response.

The inevitable manufacturing variations of the signal delays lead to
unique challenge-response behaviors.

1
Figure from Georg T. Becker, “The Gap Between Promise and Reality: On the Insecurity of XOR Arbiter PUFs”, 2015.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 3 / 13



Desired Properties of a PUF design

Being lightweight: low time and circuit complexities of the hardware;

Being strong: huge challenge space, thus huge PUF instance space;

Reliability: the same challenge results in the same response w.h.p.;

Security: hard to predict with high accuracy the challenge-response
behavior given reasonable amount of information.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 4 / 13



Security of APUFs

Lightweight, strong, and reliable.

However insecure. Challenge-response behavior r(c) of m-bit APUF:

r(c) = [∆(c) ≥ 0] , ∆(c) = w>p ,

w: (m + 1)-d vector that is only a function of the signal delays in the
APUF instance,
p (parity): (m + 1)-d vector that is only a function of the challenge c.

Linear classification model; easy to learn given reasonable number of
challenge-response pairs (CRPs).

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 5 / 13



Security of APUFs

Lightweight, strong, and reliable.

However insecure. Challenge-response behavior r(c) of m-bit APUF:

r(c) = [∆(c) ≥ 0] , ∆(c) = w>p ,

w: (m + 1)-d vector that is only a function of the signal delays in the
APUF instance,
p (parity): (m + 1)-d vector that is only a function of the challenge c.

Linear classification model; easy to learn given reasonable number of
challenge-response pairs (CRPs).

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 5 / 13



Arbiter-based PUFs: XOR APUFs

k-XOR APUF:

XOR-sum of k APUF instances (sharing the challenge).

#CRPs required in learning is believed to be exponential in k .

Empirically vulnerable to reliability-based attacks, where the reliability
information (probability of getting the same response) is accessible
besides merely the response.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 6 / 13



Arbiter-based PUFs: XOR APUFs

k-XOR APUF:

XOR-sum of k APUF instances (sharing the challenge).

#CRPs required in learning is believed to be exponential in k .

Empirically vulnerable to reliability-based attacks, where the reliability
information (probability of getting the same response) is accessible
besides merely the response.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 6 / 13



Arbiter-based PUFs: XOR APUFs

k-XOR APUF:

XOR-sum of k APUF instances (sharing the challenge).

#CRPs required in learning is believed to be exponential in k .

Empirically vulnerable to reliability-based attacks, where the reliability
information (probability of getting the same response) is accessible
besides merely the response.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 6 / 13



Arbiter-based PUFs: Interpose PUFs (iPUFs)

(x , y)-iPUF:

Use two XOR APUFs as follows:

r(c) = r2(c1, r1(c), c2) ,

r1 and r2: respectively an x-XOR APUF and a y -XOR APUF,
(c1, c2): some fixed split of c.

As secure as (x/2 + y)-XOR APUF, while moreover resilient to
reliability-based attacks.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 7 / 13



Arbiter-based PUFs: Interpose PUFs (iPUFs)

(x , y)-iPUF:

Use two XOR APUFs as follows:

r(c) = r2(c1, r1(c), c2) ,

r1 and r2: respectively an x-XOR APUF and a y -XOR APUF,
(c1, c2): some fixed split of c.

As secure as (x/2 + y)-XOR APUF, while moreover resilient to
reliability-based attacks.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 7 / 13



Our Contribution: Shift PUFs

c = [c1, . . . , cm] `

c(`) = [c`+1, . . . , cm, c1, . . . , c`] APUF Instance r

Prepend to APUF a (w.l.o.g., left) circular shift operation.

Model of challenge-response behavior r(c) becomes:

r(c) = [∆Shift(c) ≥ 0] , ∆Shift(c) = ∆(c(`)) ,

c(`): the circular shift of c by ` bits.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 8 / 13



Shift Displacement ` in Shift PUFs

If ` is known by attacker, then the attacker could easily preprocess
out the effect of the circular shift.

Recall: securely generating some secret ` is exactly among the
applications of PUFs.

Could use PUF-based key generation with the underlying APUF
instance to securely generate `;

` is only logm bits long; will not harm the efficiency badly.

c = [c1, . . . , cm] `

c(`) = [c`+1, . . . , cm, c1, . . . , c`] APUF Instance

PUF-based Key Gen

r

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 9 / 13



Shift Displacement ` in Shift PUFs

If ` is known by attacker, then the attacker could easily preprocess
out the effect of the circular shift.

Recall: securely generating some secret ` is exactly among the
applications of PUFs.

Could use PUF-based key generation with the underlying APUF
instance to securely generate `;

` is only logm bits long; will not harm the efficiency badly.

c = [c1, . . . , cm] `

c(`) = [c`+1, . . . , cm, c1, . . . , c`] APUF Instance

PUF-based Key Gen

r

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 9 / 13



Shift Displacement ` in Shift PUFs

If ` is known by attacker, then the attacker could easily preprocess
out the effect of the circular shift.

Recall: securely generating some secret ` is exactly among the
applications of PUFs.

Could use PUF-based key generation with the underlying APUF
instance to securely generate `;

` is only logm bits long; will not harm the efficiency badly.

c = [c1, . . . , cm] `

c(`) = [c`+1, . . . , cm, c1, . . . , c`] APUF Instance

PUF-based Key Gen

r

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 9 / 13



Shift Displacement ` in Shift PUFs

If ` is known by attacker, then the attacker could easily preprocess
out the effect of the circular shift.

Recall: securely generating some secret ` is exactly among the
applications of PUFs.

Could use PUF-based key generation with the underlying APUF
instance to securely generate `;

` is only logm bits long; will not harm the efficiency badly.

c = [c1, . . . , cm] `

c(`) = [c`+1, . . . , cm, c1, . . . , c`] APUF Instance

PUF-based Key Gen

r

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 9 / 13



Shift Displacement ` in Shift PUFs

If ` is known by attacker, then the attacker could easily preprocess
out the effect of the circular shift.

Recall: securely generating some secret ` is exactly among the
applications of PUFs.

Could use PUF-based key generation with the underlying APUF
instance to securely generate `;

` is only logm bits long; will not harm the efficiency badly.

c = [c1, . . . , cm] `

c(`) = [c`+1, . . . , cm, c1, . . . , c`] APUF Instance

PUF-based Key Gen

r

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 9 / 13



Security of Shift PUFs

Linear classification model w.r.t. p(`), the parity of c(`), instead of p.

However ` is unknown to the attacker; cannot apply linear methods.

Eliminate the effect of ` by enumerating all ` = 0, 1, . . . ,m − 1.

Natural and general approach: a Θ(m2)-d linear classification model.



p1 p1 p1 · · · p1 p1
p2 p1p2p3 p1p3p4 · · · p1pm−1pm pmp1

p3 p1p2p4 p1p3p5 . .
.

pm−1p1 pmp2
...

... . .
.

. .
. ...

...
pm−1 p1p2pm p3p1 · · · pm−1pm−3 pmpm−2
pm p2p1 p3p2 · · · pm−1pm−2 pmpm−1
1 1 1 · · · 1 1



Conjecture: the attacker cannot do better than this approach.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 10 / 13



Security of Shift PUFs

Linear classification model w.r.t. p(`), the parity of c(`), instead of p.

However ` is unknown to the attacker; cannot apply linear methods.

Eliminate the effect of ` by enumerating all ` = 0, 1, . . . ,m − 1.

Natural and general approach: a Θ(m2)-d linear classification model.



p1 p1 p1 · · · p1 p1
p2 p1p2p3 p1p3p4 · · · p1pm−1pm pmp1

p3 p1p2p4 p1p3p5 . .
.

pm−1p1 pmp2
...

... . .
.

. .
. ...

...
pm−1 p1p2pm p3p1 · · · pm−1pm−3 pmpm−2
pm p2p1 p3p2 · · · pm−1pm−2 pmpm−1
1 1 1 · · · 1 1



Conjecture: the attacker cannot do better than this approach.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 10 / 13



Security of Shift PUFs

Linear classification model w.r.t. p(`), the parity of c(`), instead of p.

However ` is unknown to the attacker; cannot apply linear methods.

Eliminate the effect of ` by enumerating all ` = 0, 1, . . . ,m − 1.

Natural and general approach: a Θ(m2)-d linear classification model.



p1 p1 p1 · · · p1 p1
p2 p1p2p3 p1p3p4 · · · p1pm−1pm pmp1

p3 p1p2p4 p1p3p5 . .
.

pm−1p1 pmp2
...

... . .
.

. .
. ...

...
pm−1 p1p2pm p3p1 · · · pm−1pm−3 pmpm−2
pm p2p1 p3p2 · · · pm−1pm−2 pmpm−1
1 1 1 · · · 1 1



Conjecture: the attacker cannot do better than this approach.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 10 / 13



“Squaring” Arbiter-based PUFs

By substituting APUFs with shift PUFs, all arbiter-based PUF designs
might benefit from the Θ(m2) enhancement.

Any machine learning complexity T (m) becomes T (m2).2

Remark: not for turning insecure design into secure design.

Substantially adding difficulties to the attacks.

Alternatively, reducing time and/or circuit complexities of the
hardware while preserving the machine learning complexity.

2
Strictly speaking it is Θ(T (m2)), as long as T is polynomial in m; also note that Θ(T (m2)) = Θ(T (m)2) in such case.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 11 / 13



“Squaring” Arbiter-based PUFs

By substituting APUFs with shift PUFs, all arbiter-based PUF designs
might benefit from the Θ(m2) enhancement.

Any machine learning complexity T (m) becomes T (m2).2

Remark: not for turning insecure design into secure design.

Substantially adding difficulties to the attacks.

Alternatively, reducing time and/or circuit complexities of the
hardware while preserving the machine learning complexity.

2
Strictly speaking it is Θ(T (m2)), as long as T is polynomial in m; also note that Θ(T (m2)) = Θ(T (m)2) in such case.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 11 / 13



“Squaring” Arbiter-based PUFs

By substituting APUFs with shift PUFs, all arbiter-based PUF designs
might benefit from the Θ(m2) enhancement.

Any machine learning complexity T (m) becomes T (m2).2

Remark: not for turning insecure design into secure design.

Substantially adding difficulties to the attacks.

Alternatively, reducing time and/or circuit complexities of the
hardware while preserving the machine learning complexity.

2
Strictly speaking it is Θ(T (m2)), as long as T is polynomial in m; also note that Θ(T (m2)) = Θ(T (m)2) in such case.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 11 / 13



“Squaring” Arbiter-based PUFs

By substituting APUFs with shift PUFs, all arbiter-based PUF designs
might benefit from the Θ(m2) enhancement.

Any machine learning complexity T (m) becomes T (m2).2

Remark: not for turning insecure design into secure design.

Substantially adding difficulties to the attacks.

Alternatively, reducing time and/or circuit complexities of the
hardware while preserving the machine learning complexity.

2
Strictly speaking it is Θ(T (m2)), as long as T is polynomial in m; also note that Θ(T (m2)) = Θ(T (m)2) in such case.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 11 / 13



“Squaring” Arbiter-based PUFs

By substituting APUFs with shift PUFs, all arbiter-based PUF designs
might benefit from the Θ(m2) enhancement.

Any machine learning complexity T (m) becomes T (m2).2

Remark: not for turning insecure design into secure design.

Substantially adding difficulties to the attacks.

Alternatively, reducing time and/or circuit complexities of the
hardware while preserving the machine learning complexity.

2
Strictly speaking it is Θ(T (m2)), as long as T is polynomial in m; also note that Θ(T (m2)) = Θ(T (m)2) in such case.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 11 / 13



Next Step

To empirically verify the conjecture: T (m) becomes T (m2).

Various kinds of arbiter-based PUFs.

Various commonly used attacks.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 12 / 13



Thank you.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 13 / 13


