The Shift PUF: Technique for Squaring the Machine Learning

Complexity of Arbiter-based PUFs

Yi Tang ! Donghang Wu 2 Yongzhi Cao 2 Marian Margraf 3

LUniversity of Michigan
2Peking University

3Freie Universitat Berlin

CASES 2020 WiP

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 1/13

Physically Unclonable Functions (PUFs)

@ Hardware cryptographic identification primitive;
@ Exploiting inevitable manufacturing variations;

@ Hence “physically unclonable.”

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 2/13

Physically Unclonable Functions (PUFs)

Hardware cryptographic identification primitive;

Exploiting inevitable manufacturing variations;

Hence “physically unclonable.”

A PUF Instance is identified by its behavior as a (probabilistic)
mapping from inputs (challenges) to outputs (responses).

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 2/13

Arbiter PUFs (APUFs)

Start Stage 1 Stage 2 Stage 3 Stage n Arbiter Response

o ! Challenge decides the paths: either parallel or crossing.

@ Two signals are triggered simultaneously and propagate along the
decided paths.

o Arbiter judges the race and yields the result as response.

1
Figure from Georg T. Becker, “The Gap Between Promise and Reality: On the Insecurity of XOR Arbiter PUFs”, 2015.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 3/13

Arbiter PUFs (APUFs)

Start Stage 1 Stage 2 Stage 3 Stage n Arbiter Response

1 Challenge decides the paths: either parallel or crossing.

Two signals are triggered simultaneously and propagate along the
decided paths.

o Arbiter judges the race and yields the result as response.

The inevitable manufacturing variations of the signal delays lead to
unique challenge-response behaviors.

1
Figure from Georg T. Becker, “The Gap Between Promise and Reality: On the Insecurity of XOR Arbiter PUFs”, 2015.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 3/13

Desired Properties of a PUF design

Being lightweight: low time and circuit complexities of the hardware;
Being strong: huge challenge space, thus huge PUF instance space;

Reliability: the same challenge results in the same response w.h.p.;

Security: hard to predict with high accuracy the challenge-response
behavior given reasonable amount of information.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 4/13

Security of APUFs

o Lightweight, strong, and reliable.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 5/13

Security of APUFs

o Lightweight, strong, and reliable.
@ However insecure. Challenge-response behavior r(c) of m-bit APUF:

r(€) =[A(c) 2 0], A(c)=w'p,

w: (m+ 1)-d vector that is only a function of the signal delays in the

APUF instance,

p (parity): (m+ 1)-d vector that is only a function of the challenge c.
@ Linear classification model; easy to learn given reasonable number of

challenge-response pairs (CRPs).

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 5/13

Arbiter-based PUFs: XOR APUFs

k-XOR APUF:
@ XOR-sum of k APUF instances (sharing the challenge).

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 6/13

Arbiter-based PUFs: XOR APUFs

k-XOR APUF:
@ XOR-sum of k APUF instances (sharing the challenge).

@ #CRPs required in learning is believed to be exponential in k.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 6/13

Arbiter-based PUFs: XOR APUFs

k-XOR APUF:
@ XOR-sum of k APUF instances (sharing the challenge).
@ #CRPs required in learning is believed to be exponential in k.

o Empirically vulnerable to reliability-based attacks, where the reliability
information (probability of getting the same response) is accessible
besides merely the response.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 6/13

Arbiter-based PUFs: Interpose PUFs (iPUFs)

(x,y)-iPUF:
@ Use two XOR APUFs as follows:

r(c) = r(c1, n(c), c2) ,

r; and ry: respectively an x-XOR APUF and a y-XOR APUF,
(c1,c2): some fixed split of c.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 7/13

Arbiter-based PUFs: Interpose PUFs (iPUFs)

(x,y)-iPUF:
@ Use two XOR APUFs as follows:

r(c) = r(c1, n(c), c2) ,

r; and ry: respectively an x-XOR APUF and a y-XOR APUF,
(c1,c2): some fixed split of c.

@ As secure as (x/2 + y)-XOR APUF, while moreover resilient to
reliability-based attacks.

13

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP

7/

Our Contribution: Shift PUFs

C:[Cl,...,Cm] V4

Vo
c® =cos1, s Cmcty. ..l 4{ APUF Instance }—> r

@ Prepend to APUF a (w.l.o.g., left) circular shift operation.

@ Model of challenge-response behavior r(c) becomes:
r(c) = [Ashire(c) > 0], Aspire(c) = A(c?)

c®): the circular shift of c by ¢ bits.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP

Shift Displacement ¢ in Shift PUFs

@ If £ is known by attacker, then the attacker could easily preprocess
out the effect of the circular shift.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 9/13

Shift Displacement ¢ in Shift PUFs

@ If £ is known by attacker, then the attacker could easily preprocess
out the effect of the circular shift.

@ Recall: securely generating some secret £ is exactly among the
applications of PUFs.

CASES 2020 WiP

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs

Shift Displacement ¢ in Shift PUFs

@ If £ is known by attacker, then the attacker could easily preprocess
out the effect of the circular shift.

@ Recall: securely generating some secret £ is exactly among the
applications of PUFs.

@ Could use PUF-based key generation with the underlying APUF
instance to securely generate /;

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 9/13

Shift Displacement ¢ in Shift PUFs

@ If £ is known by attacker, then the attacker could easily preprocess
out the effect of the circular shift.

@ Recall: securely generating some secret £ is exactly among the
applications of PUFs.

@ Could use PUF-based key generation with the underlying APUF
instance to securely generate /;

@ / is only log m bits long; will not harm the efficiency badly.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 9/13

Shift Displacement ¢ in Shift PUFs

@ If £ is known by attacker, then the attacker could easily preprocess
out the effect of the circular shift.

@ Recall: securely generating some secret £ is exactly among the
applications of PUFs.

@ Could use PUF-based key generation with the underlying APUF
instance to securely generate /;

@ / is only log m bits long; will not harm the efficiency badly.

c=[c1,...,Cm] £<———JPUF based KeyGen‘

/ 7777777777777777

¢® = [crs1,-.. Cmoc, .., &) —— APUF Instance —r

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP

Security of Shift PUFs

o Linear classification model w.r.t. p(), the parity of c¥), instead of p.

@ However £ is unknown to the attacker; cannot apply linear methods.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 10/13

Security of Shift PUFs

Linear classification model w.r.t. p{9), the parity of c(), instead of p.

P1
PmP1

Pmp2

PmPm—2
PmPm—1

°
@ However £ is unknown to the attacker; cannot apply linear methods.
@ Eliminate the effect of £ by enumerating all £ =10,1,...,m— 1.
o Natural and general approach: a ©(m?)-d linear classification model.
P1 P1 P1 P1
P2 P1P2P3 P1P3P4 P1Pm—1Pm
p3 pLP2P4 P1P3P5 - Pm—1P1
Pm’—l P1P‘2Pm P3p1 Pm—l‘Pm—3
Pm P2p1 P3p2 Pm—1Pm—2
1 1 1 . 1

Y. Tang, DH. Wu, YZ. Cao, M. Margraf

1

The Shift PUF: Squaring Arbiter-based PUFs

CASES 2020 WiP

Security of Shift PUFs

o Linear classification model w.r.t. p(), the parity of c¥), instead of p.
@ However £ is unknown to the attacker; cannot apply linear methods.
@ Eliminate the effect of £ by enumerating all £ =10,1,...,m— 1.
o Natural and general approach: a ©(m?)-d linear classification model.

p1 p1 p1 P1 p1

P2 P1P2P3 P1P3P4 P1Pm—1Pm PmP1

p3 pLP2P4 P1P3P5 - Pm—1P1 PmP2

Pm’—l P1P‘2Pm P3p1 Pm—l‘Pm—3 PmP‘m—Q
Pm P2p1 P3p2 Pm—1Pm—2 PmPm—1
1 1 1 1 1

@ Conjecture: the attacker cannot do better than this approach.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP

“Squaring” Arbiter-based PUFs

By substituting APUFs with shift PUFs, all arbiter-based PUF designs
might benefit from the ©(m?) enhancement.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 11/13

“Squaring” Arbiter-based PUFs

By substituting APUFs with shift PUFs, all arbiter-based PUF designs
might benefit from the ©(m?) enhancement.

@ Any machine learning complexity T(m) becomes T(m?).2

2
Strictly speaking it is ©(T(m?)), as long as T is polynomial in m; also note that ©(T(m?)) = ©(T(m)?) in such case.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 11/13

“Squaring” Arbiter-based PUFs

By substituting APUFs with shift PUFs, all arbiter-based PUF designs
might benefit from the ©(m?) enhancement.

@ Any machine learning complexity T(m) becomes T(m?).2

@ Remark: not for turning insecure design into secure design.

2
Strictly speaking it is ©(T(m?)), as long as T is polynomial in m; also note that ©(T(m?)) = ©(T(m)?) in such case.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 11/13

“Squaring” Arbiter-based PUFs

By substituting APUFs with shift PUFs, all arbiter-based PUF designs
might benefit from the ©(m?) enhancement.

@ Any machine learning complexity T(m) becomes T(m?).2
@ Remark: not for turning insecure design into secure design.

@ Substantially adding difficulties to the attacks.

2
Strictly speaking it is ©(T(m?)), as long as T is polynomial in m; also note that ©(T(m?)) = ©(T(m)?) in such case.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 11/13

“Squaring” Arbiter-based PUFs

By substituting APUFs with shift PUFs, all arbiter-based PUF designs
might benefit from the ©(m?) enhancement.
@ Any machine learning complexity T(m) becomes T(m?).2
@ Remark: not for turning insecure design into secure design.
@ Substantially adding difficulties to the attacks.
o Alternatively, reducing time and/or circuit complexities of the
hardware while preserving the machine learning complexity.

2
Strictly speaking it is ©(T(m?)), as long as T is polynomial in m; also note that ©(T(m?)) = ©(T(m)?) in such case.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 11/13

To empirically verify the conjecture: T(m) becomes T(m?).
@ Various kinds of arbiter-based PUFs.

@ Various commonly used attacks.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2020 WiP 12/13

Thank you.

Y. Tang, DH. Wu, YZ. Cao, M. Margraf The Shift PUF: Squaring Arbiter-based PUFs CASES 2 WiP 13/13

