Implementing Signal

Yi Tang, Yevgeniy Dodis
New York University

August, 2019

Abstract

The Signal protocol is an open source secure messaging protocol that provides end-to-end authen-
ticated encryption with many appealing security advantages. The protocol is extensively deployed and
secures the daily communication of billions of users via popular messaging applications such as Signal
(originally TextSecure), WhatsApp, Google Allo, Facebook Messenger, Skype, etc.

0 B © ©

[ACD19] formally analyzes the double ratchet algorithm, which is the core component of the Signal
protocol. The paper proposes a decomposition of the double ratchet algorithm into multiple generic cryp-
tographic modules. The modularization enables customization of the algorithm using different instances
of the modules. As a result, if certain cryptographic structure currently used in the Signal protocol
turned out to be unsafe, then it could be replaced with other safe alternatives and the security of Signal
protocol could be recovered. More interestingly, the modularization naturally leads to post-quantum
variants of the Signal protocol by employing quantum-safe module instances.

The modularization in [ACD19] decomposes the Signal protocol into four modules, namely the Contin-
uous Key Agreement (CKA), PRF-PRNG (PRGF), PRG and Authenticated Encryption with Associated
Data (AEAD). The paper also describes how to construct CKA from Key Encapsulation Mechanism
(KEM) and PRGF from HKDF. Besides, there are well known constructions of HKDF from HMAC (e.g.
see [KE10]), AEAD from SKE along with HMAC (e.g. see [McGO08]), and PRG from PRF (trivial by
definition). Following the modularization and the constructions, the implementation has a hierarchical
software structure as illustrated in Figure[I] The implementation is presented as a C library.

Top-level testing shell (hiding back all Signal-related details)

High-level Signal protocol interface (providing e.g. send and recv functionalities)

/N T

CKA PRG AEAD PRGF

/ | | |
KEM PRF SKE HKDF
C d
miac
e
FrodoKEM

Misc. cryptographic structures
(e.g. SHA, AES, Diffie-Hellman)

Figure 1: The software hierarchy of the implementation. FrodoKEM (http://frodokem.org/) is a post-
quantum KEM scheme whose security derives from the learning with error problem. The miscellaneous
cryptographic structures have dependency on library Botan (https://botan.randombit.net/).

http://frodokem.org/
https://botan.randombit.net/

To exemplify, by using the first configuration in the following list, one can reconstruct the original
Signal protocol; the second configuration leads to a post-quantum variant of the Signal protocol; and the
third configuration brings about an improvement to the second.

o CKA: (compressed) Diffie- e CKA: [KEM-based] e CKA: (compressed)
Hellman with Curve25519 _ KEM: Frodo640 Frodo640

e PRGF: [HKDF-based] * PRGF: [HKDF-based]

¢ PRGF: [HKDF-based]

— HKDF: SHA-256 — HKDF: SHA-256 — HKDF: SHA-256
e PRG: [PRF-based] e PRG: [PRF-based] e PRG: [PRF-based]

— PRF: SHA-256 — PRF: SHA-256 — PRF: SHA-256
e AEAD: AES-128-SIV e AEAD: AES-128-SIV e AEAD: AES-128-SIV

Note that in the first and third configuration the CKA instances are not constructed from KEM
and are referred to as some “compressed” scheme. It is known that KEM can be generically constructed
from PKE, but there are often more efficient schemes if one directly construct CKA from PKE and apply
certain compression. However currently a generic way to perform such compression is not yet found. In
addition, it is worth mentioning that the implementation of the compressed Frodo module used in the
third configuration is a challenging task from the perspective of coding. The FrodoKEM library is not
highly modularized as it does not expect customization. Therefore in the implementation there exists a
middleware FrodoKEM toolbox, which might be found useful by those about to customize FrodoKEM.

As a primitive benchmarking, the time and space performances of the three example Signal variants
are compared. The results are plotted in Figure

T T T T T T T
—e—DH (orig. Signal) x 100 -
L5 Frodo | ~ h
—o— improved Frodo ;% 80 - |
<
=2 ~
(]
*g 1+ N t/§1 60 N
b E
£ S 40| B
3 o
0.5 f E 20 I — DH (orie. Si |
b (orig. Signal)
iﬁ o Frodo
= 0 —— improved Frodo ||
| | | | | | l | | | | 1 1
2 3 4 5 6 7 8 0 0.2 0.4 0.6 0.8 1
#Messages / 103 Message Size / byte -10°

Figure 2: Left: comparison of time performances of example Signal variants under random asynchronous
messaging test. Right: comparison of message-packet size ratio of example Signal variants.

The codes as well as the description of the implementation can be found at the project homepage:
https://cims.nyu.edu/~yt1433/signal.html. DBesides FrodoKEM, we are also planning to adapt
other post-quantum schemes such as NewHope, CRYSTALS-Kyber and SIKE, and trying to seek their
compressed versions like of Diffie-Hellman and FrodoKEM.

References

[ACD19] Joél Alwen, Sandro Coretti and Yevgeniy Dodis, “The Double Ratchet: Security Notions, Proofs,
and Modularization for the Signal Protocol”, https://cims.nyu.edu/~dodis/ps/signal.pdf.

[KE10] H.Krawczyk and P. Eronen, “HMAC-based Extract-and-Expand Key Derivation Function (HKDF)”
(RFC 5869), https://tools.ietf.org/html/rfc5869.

[McGO08] D. McGrew, “An Interface and Algorithms for Authenticated Encryption” (RFC 5116), https:
//tools.ietf.org/html/rfc5116.

https://cims.nyu.edu/~yt1433/signal.html
https://cims.nyu.edu/~dodis/ps/signal.pdf
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc5116

Appendix A: Code Demo

C Code for a toy asynchronous communication:
int main() {
// initialize
init ();

// send first message from sender A

size_t s = send (A, "Hello_.World”);

// asynchronously send & receive

size_t sl = send (A, ”"message.no.l, A to.B”);

recv(sl);

size_t s2 = send (B, ”"message_no.2,.B_to_A”);

// Note that B should receive at least one message
// (but not necessarily the first message) before sending.

size_t s3 = send (A, ”"message.no.3,_ A to.B”);

recv (s3);
recv(s2);

size_t s4 = send (B, ”"message_no.4,.B_to_A”);

recv (s);
recv(s4d);

// cleanup
free_all ();

return 0;

Built-in command line visualization:

Alice

—> message 0: (1, 1 | 0) Hello World
—> message 1: (1, 2 | 0) message no.l,
—> decrypt
<— 1Imessage
—> message 3: (1, 3 | 0) message no.3,
—> decrypt
<— decrypt 2: (2, 1 | 0) message no.2,
<— message
—> decrypt
<— decrypt 4: (2, 2 | 0) message no.4,

The module instances are specified at compile time. Note that code is totally generic as it does not
depend on specific choice of module instances. And the decryption under asynchronous communication

succeeds no matter what module instances are used.

message no.l,
message no.2,

message no.J,

message no.4,

Hello World

A to
B to

A to

B to

begies)

