Implementing Signal

Yi Tang, Yevgeniy Dodis
New York University

August 20, 2019

L HATE YT Jos

Project Homepage

URL: https://cims.nyu.edu/~yt1433/signal.html.

About

Figure: Screenshot of project homepage.

https://cims.nyu.edu/~yt1433/signal.html

Table of Contents

Introduction
(Original) Signal Protocol
Generalization of Signal Protocol

Specification
Modularization of Signal Protocol
Constructions of Misc. Modules

Implementation
Hierarchical Overview of Implementation
Examples of Module Instances

Benchmarking
Time Benchmarking
Space Benchmarking

References

Signal Protocol

The Signal protocol is an open source secure messaging protocol
that provides end-to-end authenticated encryption. The protocol is
extensively deployed among popular messaging applications e.g.

» Signal (originally TextSecure),
> WhatsApp,
» Google Allo,
>
>

Facebook Messenger,

Skype, etc.

Generalization of Signal Protocol

» [ACD19] decomposes the double ratchet algorithm (core of
Signal) into generic cryptographic modules.

» Customize Signal by using different module instances.

» Create post-quantum variants of Signal by employing
quantum-safe module instances!

Modularization of Signal Protocol

Signal Scheme

Init-A (k)

ide A

(kroot, keka) — k

Oroar + P-Init(kroot)

(0100t wR) ¢ P-Up(Troat; A)
7+ CKA-Init-A(keka)

Teur A

fpry 0

teur,is, iR 0

D[]« A

skip (t,u)

while ir < u
iR ++
(wgr, K) « G(wg)
D[t,ig] + K

Send-A (m)
if teur is even
teur ++
Lo+ is
is &0
(7, Tew 1) % CKAS(7)
(Ovootws) + P-Up(avoot, 1)
is ++
(ws, K) ¢ G(us)
h+ (teur,is, Teur, Cor)
e Enc(K, h,m)
return (h, e)

try-skipped (t,i)
K« Dt i
Dlt,i] + L
return K

Rev-A (¢)
(hye) ¢
(4, T, 6) « h
req t even and ¢ < ey + 1
it =ty + 1
skip(t — 2,¢)
beyr ++, ig & 0
(v, 1) + CKA-R(+,T)
(Groots wr) + P-Up(Troot, 1)
K + try-skipped(t,i)
if K =1
skip(t,i—1)
iR ++
(wg, K) + Glwg)
m + Dec(K, h,e)
if m= 1
| error
return (t,i,m)

Figure: The Modularization of Signal protocol proposed by [ACD19],
involving “CKA”, “P", “G” and (“Enc”, "Dec”). (Figure 9 in [ACD19].)

Modularization of Signal Protocol (cont.)

The Signal protocol is decomposed into
» “CKA": Continuous Key Agreement (CKA),
» “P": PRF-PRNG (PRGF),
» “G": Pseudo-Random Generator (PRG),

» (“Enc”, “Dec”): Authenticated Encryption with Associated
Data (AEAD).

Constructions of Miscellaneous Modules

» CKA from Key Encapsulation Mechanism (KEM) ([ACD19]),

» PRGF from Hash-based Key Derivation Function (HKDF)
([ACD19]);

» HKDF from Hash-based Message Authentication Code
(HMAC) (e.g. see [KE10]),

» AEAD from Secret/Symmetric Key Encryption (SKE) along
with HMAC (e.g. see [McGO08]),

» PRG from PRF (trivial according to definitions).

Hierarchical Overview of Implementation

Bottom-up:

» Abundant module instances of CKA, PRGF, PRG, AEAD
(and also KEM, HKDF, HMAC, PRF, SKE)

» where sub-hierarchy exists according to the specification
» e.g. CKAs can be generically constructed from KEMs

» High-level Signal protocol interface, providing e.g. send and
recv functionalities

» Top-level testing shell, hiding back all Signal-related details

All components are implemented in C.

Examples of Module Instances

Example 1: reconstructing the original Signal Protocol

» CKA: (compressed) Diffie-Hellman with Curve25519
» PRGF: [HKDF-based]

» HKDF: SHA-256
» PRG: [PRF-based]

> PRF: SHA-256

» AEAD: AES-128-SIV

Examples of Module Instances (cont.)

Example 2: post-quantum variant of the Signal Protocol
» CKA: [KEM-based]
» KEM: Frodo640*
» PRGF: [HKDF-based]
» HKDF: SHA-256
» PRG: [PRF-based]
» PRF: SHA-256

» AEAD: AES-128-SIV

FrodoKEM, a post-quantum KEM scheme whose security derives from the
learning with error problem

Examples of Module Instances (cont.)

Example 3: improved post-quantum variant of the Signal Protocol

» CKA: (compressed) Frodo640
> PRGF: [HKDF-based]

» HKDF: SHA-256
> PRG: [PRF-based]

> PRF: SHA-256

» AEAD: AES-128-SIV

Time Benchmarking

T T T T
—e—DH (orig. Signal)
L5 Frodo |
—e— improved Frodo
2
gz 1 1
O
[0}
E
l_
0.5 2
| | | | | | |

2 3 4 5 6 7 8
#Messages / 103

Figure: Comparison of time performance of example Signal variants under
random asynchronous messaging test.

Space Benchmarking

X 100 -
~

s [

= 80 :
(04

(0]

No60 |- -
n

¥

o 40+ |
[

o

S 201 —— DH (orig. Signal) |
ﬁ — Frodo

S 0+ —— improved Frodo |

| | | |
0 0.2 0.4 0.6 0.8 1
Message Size / byte -10°

Figure: Comparison of message-packet size ratio of example Signal
variants.

References

[ACD19] Joél Alwen, Sandro Coretti and Yevgeniy Dodis, " The Double
Ratchet: Security Notions, Proofs, and Modularization for the
Signal Protocol”,
https://cims.nyu.edu/~dodis/ps/signal.pdf.

[KE10] H. Krawczyk and P. Eronen, "HMAC-based

Extract-and-Expand Key Derivation Function (HKDF)" (RFC
5869), https://tools.ietf.org/html/rfc5869.

[McG08] D. McGrew, "An Interface and Algorithms for Authenticated
Encryption” (RFC 5116),
https://tools.ietf.org/html/rfc5116.

https://cims.nyu.edu/~dodis/ps/signal.pdf
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5116

I’'mjust here
for the signal

i

	Introduction
	(Original) Signal Protocol
	Generalization of Signal Protocol

	Specification
	Modularization of Signal Protocol
	Constructions of Misc. Modules

	Implementation
	Hierarchical Overview of Implementation
	Examples of Module Instances

	Benchmarking
	Time Benchmarking
	Space Benchmarking

	References

