Lattice-based Laconic Function Evaluation (LFE)

Yi Tang

October 10, 2024

Definition of LFE

Syntax [QWW18]:

Y

Dec [f]

Definition of LFE

Syntax [QWW18]:

pp —

Y

®

Properties:

» Correctness: y = f(x).

Dec [f]

Definition of LFE

Syntax [QWW18]:

pp — Digest [f] —— df

Properties:

Y

Dec[f]——— ¥

» Correctness: y = f(x).
» Security: Enc(pp, df, x) ~ S(pp, f, df, f(x)); adaptive: f,x chosen by A(pp).

Definition of LFE

Syntax [QWW18]:

pp — Digest [f] —— df

Properties:

Y

Dec[f]——— ¥

» Correctness: y = f(x).
» Security: Enc(pp, df, x) ~ S(pp, f, df, f(x)); adaptive: f,x chosen by A(pp).
» Efficiency: laconic, |pp|, |df| < |f].

Motivation: f = fp for a large dataset D.
Applications:

» “Online-optimized” MPC.

then reusable garbled circuit by [GKPT13].

> “Bob-optimized” 2-round 2PC. (Cf., FHE solution is “Alice-optimized”.)
» (Alternative construction of) succinct (1-key) functional encryption (FE),

«4O0> «F>» « >

« =

DA

Applications of LFE

Motivation: f = fp for a large dataset D.

Applications:
» “Bob-optimized” 2-round 2PC. (Cf., FHE solution is “Alice-optimized”.)

Applications of LFE

Motivation: f = fp for a large dataset D.

Applications:
» “Bob-optimized” 2-round 2PC. (Cf., FHE solution is “Alice-optimized”.)
» “Online-optimized” MPC.

Applications of LFE

Motivation: f = fp for a large dataset D.

Applications:
» “Bob-optimized” 2-round 2PC. (Cf., FHE solution is “Alice-optimized”.)
» “Online-optimized” MPC.

» (Alternative construction of) succinct (1-key) functional encryption (FE),
then reusable garbled circuit by [GKPT13].

Recap 1/3: Learning with Errors (LWE)

LWE:
> Take A <+ Zg*™,s « Zg, and sufficiently large noise e.

> Then (A;s'A+e)~ (A; U), by hardness of lattice problems (e.g. SVP).

Gadget g :=(1,2,...,21), G, :=1,®¢g € ng”e, ¢ =Tlog,q].
GSW FHE [GSW13]:
» Secret key k =s = (—5;1).
> By LWE, sample A = (A;'TA + e') satisfies A ~Uands'A=el ~07.
» Enc(k =s,x€{0,1}): C=A+x-
(For bit string (row vector) x, C=A+x® G.)

> HEvalP**[+]((C1,C2)) = C1 4+ C2 = (A1 + A2) + (x1 + x2) - G;
HEvaIp”b[x]((Cl. Cg)) = C1 . 71((:2) = (Al . 71(C2) + X1 - A2) + (X1X2) .

40r «F>r <« «E»

DA

Recap 2/3: GSW FHE

Gadget g := (1,2,...,271), G =1, ® g € ZI*™, { = [log, q].
GSW FHE [GSW13]:
» Secret key k =s = (—5;1).
> By LWE, sample A = (A;5TA +eT) satisfies A~ U andsTA=eT ~07.

Recap 2/3: GSW FHE

Gadget g := (1,2,...,271), G =1, ® g € ZI*™, { = [log, q].
GSW FHE [GSW13]:
» Secret key k =s = (—5;1).
> By LWE, sample A = (A;5TA +eT) satisfies A~ U andsTA=eT ~07.

» Enc(k =s,x€{0,1}): C=A+x-G.
(For bit string (row vector) x, C=A+4+x® G.)

Recap 2/3: GSW FHE

Gadget g := (1,2,...,271), G =1, ® g € ZI*™, { = [log, q].
GSW FHE [GSW13]:
» Secret key k =s = (—5;1).
> By LWE, sample A = (A;5TA +eT) satisfies A~ U andsTA=eT ~07.

» Enc(k =s,x€{0,1}): C=A+x-G.
(For bit string (row vector) x, C=A+4+x® G.)

> HEvalP*®[+]((C1,Ca)) = C1 + Co = (A1 + A2) + (x1 + x2) - G;

Recap 2/3: GSW FHE

Gadget g :=(1,2,...,21), G, :=1,®¢g € ZZX’M, ¢ = [log, q].
GSW FHE [GSW13]:
» Secret key k =s = (—5;1).
> By LWE, sample A = (A;5TA +eT) satisfies A~ U andsTA=eT ~07.
» Enc(k =s,x€{0,1}): C=A+x-G.
(For bit string (row vector) x, C=A+4+x® G.)

> HEvalP*®[+]((C1,Ca)) = C1 + Co = (A1 + A2) + (x1 + x2) - G;
HEva|pUb[X]((C1, Cg)) =Cq- G_I(CQ) = (Al . G_I(CQ) + x1 - A2) + (X1X2) -G.

Recap 3/3: GSW/BGGHNSVV Homomorphism

HEvalP®*[+]((C1,C2)) = C1 + Co = (A1 + A2) + (x1 + x2) - G
HEvalP**[x]((C1,C2)) = C1 - G Y(Cp) = (A1 - G HCa) + x1 - Ap) + (x1x2) - G

Recap 3/3: GSW/BGGHNSVV Homomorphism

HEva|pUb[+]((C1, C2)) =C;1+GC, = (A1 + Az) + (X1 + Xg) -G
HEvalP**[x]((C1,C2)) = C1 - G Y(Cp) = (A1 - G HCa) + x1 - Ap) + (x1x2) - G

BGGHNSVV ABE's attribute encoding [BGG14]:
» Take uniform M (cf. C) and attribute encoding A =M — x ® G.
» Same HEvalP'® over M.

Recap 3/3: GSW/BGGHNSVV Homomorphism

HEva|pUb[+]((C1, C2)) =C;1+GC, = (A1 + Az) + (X1 + Xg) -G
HEvalP**[x]((C1,C2)) = C1 - G Y(Cp) = (A1 - G HCa) + x1 - Ap) + (x1x2) - G

BGGHNSVV ABE's attribute encoding [BGG14]:
» Take uniform M (cf. C) and attribute encoding A =M — x ® G.
» Same HEvalP'® over M.
» HEval[+]((A1, A2), (—,—),(—,—)) = A1 + Ay,

Recap 3/3: GSW/BGGHNSVV Homomorphism

HEva|pUb[+]((C1, C2)) =C;1+GC, = (A1 + Az) + (X1 + Xg) -G
HEvalP**[x]((C1,C2)) = C1 - G Y(Cp) = (A1 - G HCa) + x1 - Ap) + (x1x2) - G

BGGHNSVV ABE's attribute encoding [BGG14]:
» Take uniform M (cf. C) and attribute encoding A =M — x ® G.
» Same HEvalP'® over M.

> HEV3|[+]((A1,A2), (—, —), (—, —)) = A1 + A2,
HEV3|[><]((A1, Ag), (—, Mz), (Xl, —)) = A1 . G_I(M2) —+ X1 - A2.

Recap 3/3: GSW/BGGHNSVV Homomorphism

HEva|pUb[+]((C1, C2)) =C;1+GC, = (A1 + Az) + (X1 + Xg) -G
HEvalP**[x]((C1,C2)) = C1 - G Y(Cp) = (A1 - G HCa) + x1 - Ap) + (x1x2) - G

BGGHNSVV ABE's attribute encoding [BGG14]:
» Take uniform M (cf. C) and attribute encoding A =M — x ® G.
» Same HEvalP'® over M.
> HEV3|[+]((A17 AQ)? (_7 _)7 (_7 _)) = A1 + Ay,
HEV3|[><]((A1, Ag), (—, Mz), (Xl, —)) =A;- G_I(M2) + x1 - Ao,
» S.t., HEval[f](A, M, x) = HEval’*®[f](M) — f(x) ® G.

Attribute-based LFE (AB-LFE)

Syntax: (ABE-like, public x and secret)

pp — Digest [f] —— dr

@_.

Enc|x]

Cc

A

Dec [f, x]

[when f(/x) = 0]

L

Attribute-based LFE (AB-LFE)

Syntax: (ABE-like, public x and secret)

pp — Digest [f] —— df

i
@—» Enc|x]

Properties:

» Correctness: ;' = p when f(x) = 0.

» Security: ¢ hides p.

A

Dec [f, x]

[when f(/x) = 0]

L

Attribute-based LFE (AB-LFE)

Syntax: (ABE-like, public x and secret)

pp — Digest [f] —— dr

i
@—» Enc|x] c

Properties:

[when f(x) = 0]
Dec [f, x] w

A

» Correctness: ;' = p when f(x) = 0.
» Security: ¢ hides p.

Interpretation: LFE for “conditional disclosure” #(x, u) := (x, - (1 — £(x))).

Attribute-based LFE (AB-LFE)

Syntax: (ABE-like, public x and secret)

pp — Digest [f] —— df

= O—

Properties:

» Correctness: ;' = p when f(x) = 0.

» Security: ¢ hides p.

Enc|x]

A

Dec [f, x]

[when f(/x) = 0]

L

Interpretation: LFE for “conditional disclosure” #(x, u) := (x, - (1 — £(x))).

Generalization: f(x) € {0,1}9, have p1, ..., 1o, and require 1; = pj when fi(x) = 0.

AB-LFE from LWE

Construction: Suppose f : {0,1} — {0,1}°.
» Setup(1”): pp=M «+ nglne_
» Digest(M, f): dr = M¢ = HEvalP*®[f](M) ¢ ngOn@_

AB-LFE from LWE

Construction: Suppose f : {0,1} — {0,1}9.
» Setup(1”): pp=M «+ ZZX’”Z.
> Digest(M, f): dr = My = HEval*[f]|(M) € Z7*O.
> Enc(M, Mg, x, 1 € {0,1}9): sample s + Zg and LWE errors ey, e,

AB-LFE from LWE

Construction: Suppose f : {0,1} — {0,1}9.
» Setup(1”): pp=M «+ ZZX’”Z.
> Digest(M, f): dr = My = HEval*[f]|(M) € Z7*O.
> Enc(M, Mg, x, 1 € {0,1}9): sample s + Zg and LWE errors ey, e, sample
Rj « G 1(U(zg*h)) € {0,131, output ¢ = (R, ¢y, ¢,) where R = diag({R;};),

AB-LFE from LWE

Construction: Suppose f : {0,1} — {0,1}9.
» Setup(1”): pp=M «+ ZZX’”Z.
> Digest(M, f): dr = My = HEval*[f]|(M) € Z7*O.
> Enc(M, Mg, x, 1 € {0,1}9): sample s + Zg and LWE errors ey, e, sample
Rj « G 1(U(zg*h)) € {0,131, output ¢ = (R, ¢y, ¢,) where R = diag({R;};),
cl =s'(M-—x®G)+e EZZ’Z :
A

AB-LFE from LWE

Construction: Suppose f : {0,1} — {0,1}9.
» Setup(1”): pp=M «+ ZZX’”Z.
> Digest(M, f): dr = My = HEval*[f]|(M) € Z7*O.
> Enc(M, Mg, x, 1 € {0,1}9): sample s + Zg and LWE errors ey, e, sample
Rj « G 1(U(zg*h)) € {0,131, output ¢ = (R, ¢y, ¢,) where R = diag({R;};),

c, =s'(M-x®G)+el €z, ¢ =s"MR+e} +[q/2] pezd.
A

AB-LFE from LWE

Construction: Suppose f : {0,1} — {0,1}9.
» Setup(1”): pp=M «+ ZZX’”Z.
> Digest(M, f): dr = My = HEval*[f]|(M) € Z7*O.
> Enc(M, Mg, x, 1 € {0,1}9): sample s + Zg and LWE errors ey, e, sample
Rj « G 1(U(zg*h)) € {0,131, output ¢ = (R, ¢y, ¢,) where R = diag({R;};),
cl=s"(M-—x®G)+el ZZ’E , cI :STMfR+e/I—‘,— lq/2] - eZ(?L .
A

» Dec(M,f,x,(R,cy,cy,)): compute c;X = HEval[f](c], M, x),

AB-LFE from LWE

Construction: Suppose f : {0,1} — {0,1}9.
» Setup(1”): pp=M «+ ZZX’”Z.
> Digest(M, f): dr = My = HEval*[f]|(M) € Z7*O.
> Enc(M, Mg, x, 1 € {0,1}9): sample s + Zg and LWE errors ey, e, sample
Rj « G 1(U(zg*h)) € {0,131, output ¢ = (R, ¢y, ¢,) where R = diag({R;};),

c, =s'(M-x®G)+el €z, ¢ =s"MR+e} +[q/2] pezd.
A

» Dec(M,f,x,(R,cy,cy,)): compute c;X = HEval[f](c, , M, x), and for f;(x) = 0,
extract p; by checking |c;:XR — c;—\ > q/4 on the j-th block.

AB-LFE from LWE

Construction: Suppose f : {0,1} — {0,1}9.
» Setup(1”): pp=M «+ ZZX’”Z.
> Digest(M, f): dr = My = HEval*[f]|(M) € Z7*O.
> Enc(M, Mg, x, 1 € {0,1}9): sample s + Zg and LWE errors ey, e, sample
Rj « G 1(U(zg*h)) € {0,131, output ¢ = (R, ¢y, ¢,) where R = diag({R;};),
cl=s"(M-—x®G)+el ZZ’E , cl :STMfR+e/I—‘,— lq/2] - eZ(?L .
A

» Dec(M,f,x,(R,cy,cy,)): compute c;X = HEval[f](c, , M, x), and for f;(x) = 0,
extract p; by checking |c;:XR — c;—\ > q/4 on the j-th block.

Correctness: by CIX ~s' (Mf — f(x) ® G). Security: by LWE.

Enhancing AB-LFE

Two-outcome mode of ABE/AB-LFE:
» Normal mode: Dec outputs p if f(x) =0 and L otherwise.
» Two-outcome mode: Enc takes (9, (1), and Dec outputs p(f(x)).

Enhancing AB-LFE

Two-outcome mode of ABE/AB-LFE:
» Normal mode: Dec outputs p if f(x) =0 and L otherwise.
» Two-outcome mode: Enc takes (9, (1), and Dec outputs p(f(x)).
» Construction: apply ABX to f := f || (1 — f).

Enhancing AB-LFE

Two-outcome mode of ABE/AB-LFE:
» Normal mode: Dec outputs p if f(x) =0 and L otherwise.
» Two-outcome mode: Enc takes (9, (1), and Dec outputs p(f(x)).
» Construction: apply ABX to f := f || (1 — f).

Further compressing digest: By laconic OT [CDG"17], can improve |df| from
O - poly(n, d) (d is depth of f) to just poly(n).

Last Piece: Garbled Circuit

Syntax: (f : {0,1}/ — {0,1}9))
> Garble(1”, f): output garbled circuit I and labels (L; o, Li1)ie[n-

Last Piece: Garbled Circuit

Syntax: (f : {0,1}/ — {0,1}9))
> Garble(1”, f): output garbled circuit I and labels (L; g, L,-yl),-E[,].
> GEval(T, (L)i[): output evaluation y.

Last Piece: Garbled Circuit

Syntax: (f : {0,1}/ — {0,1}9))
> Garble(1”, f): output garbled circuit I and labels (L; g, L,-yl),-E[,].
> GEval(T, (L)i[): output evaluation y.

Correctness: GEval(T, (Li x)ic[n) = f(x).

Last Piece: Garbled Circuit

Syntax: (f : {0,1}/ — {0,1}9))
> Garble(1”, f): output garbled circuit I and labels (L; g, L,-yl),-E[,].
> GEval(T, (L)i[): output evaluation y.

Correctness: GEval(T, (Li x)ic[n) = f(x).

Yao's construction: gate by gate, so |['| = |f| - poly(n); also |L; | = poly(n).

Constructing LFE

Ingredients: two-outcome AB-LFE (toABLFE), FHE, garbled circuit (GC).

Construction:
» Setup(1”): same as toABLFE.Setup.

Constructing LFE

Ingredients: two-outcome AB-LFE (toABLFE), FHE, garbled circuit (GC).

Construction:
» Setup(1”): same as toABLFE.Setup.
» Digest(pp, f): f1 := FHE.HEval[f], output df = toABLFE.Digest(pp, f1).

Constructing LFE

Ingredients: two-outcome AB-LFE (toABLFE), FHE, garbled circuit (GC).
Construction:
» Setup(1”): same as toABLFE.Setup.

» Digest(pp, f): f1 := FHE.HEval[f], output df = toABLFE.Digest(pp, f1).
> Enc(pp, df, x):
sample FHE secret k + FHE.Gen(1"), compute ¢, = FHE.Enc(k, x),

Constructing LFE

Ingredients: two-outcome AB-LFE (toABLFE), FHE, garbled circuit (GC).

Construction:
» Setup(1”): same as toABLFE.Setup.
» Digest(pp, f): f1 := FHE.HEval[f], output df = toABLFE.Digest(pp, f1).
» Enc(pp, df, x):
sample FHE secret k + FHE.Gen(1"), compute ¢, = FHE.Enc(k, x),
compute (T, (Lo, Li1)i) = Garble(1", FHE.Dec(k, -)),

Constructing LFE

Ingredients: two-outcome AB-LFE (toABLFE), FHE, garbled circuit (GC).

Construction:
» Setup(1”): same as toABLFE.Setup.
» Digest(pp, f): f1 := FHE.HEval[f], output df = toABLFE.Digest(pp, f1).
> Enc(pp, dr, x):
sample FHE secret k + FHE.Gen(1"), compute ¢, = FHE.Enc(k, x),
compute (T, (Lo, Li1)i) = Garble(1", FHE.Dec(k, -)),
compute ¢ = toABLFE.Enc(pp, df, cx, (Lio)i, (Li1)i),
output ¢’ = (T, ¢).

Constructing LFE

Ingredients: two-outcome AB-LFE (toABLFE), FHE, garbled circuit (GC).

Construction:
» Setup(1”): same as toABLFE.Setup.
» Digest(pp, f): f1 := FHE.HEval[f], output df = toABLFE.Digest(pp, f1).
» Enc(pp, df, x):
sample FHE secret k + FHE.Gen(1"), compute ¢, = FHE.Enc(k, x),
compute (T, (Lo, Li1)i) = Garble(1", FHE.Dec(k, -)),
compute ¢ = toABLFE.Enc(pp, df, cx, (Lio)i, (Li1)i),
output ¢’ = (T, ¢).
> Dec(pp, f, (T, c)): (L;); = toABLFE.Dec(pp, f,), output y = GEval(T, (L;);).

Verifying the Correctness

f1:= FHE.HEval[f], df = toABLFE.Digest(pp, f') ,
¢x = FHE.Enc(k, x) , (T, (Lio, Li1)i) = Garble(1", FHE.Dec(k, -)) ,
¢ = toABLFE.Enc(pp, dr, ¢, (Lio)i, (Li1)i)
(L;); = toABLFE.Dec(pp, f,c) , y = GEval(l', (L)) .

Want: y = f(x).

Verifying the Correctness

f1:= FHE.HEval[f], df = toABLFE.Digest(pp, f') ,
¢x = FHE.Enc(k, x) , (T, (Lio, Li1)i) = Garble(1", FHE.Dec(k, -)) ,
¢ = toABLFE.Enc(pp, dr, ¢, (Lio)i, (Li1)i)
(L;); = toABLFE.Dec(pp, f,c) , y = GEval(l', (L)) .

Want: y = f(x).
> By toABLFE, L; = L; rt(c.)i

Verifying the Correctness

f1:= FHE.HEval[f], df = toABLFE.Digest(pp, f') ,
¢x = FHE.Enc(k, x) , (T, (Lio, Li1)i) = Garble(1", FHE.Dec(k, -)) ,
¢ = toABLFE.Enc(pp, dr, ¢, (Lio)i, (Li1)i)
(L;); = toABLFE.Dec(pp, f,c) , y = GEval(l', (L)) .

Want: y = f(x).
> By tOABLFE, L,' = Li,fT(cX)[i]'
> By FHE, ff(cx) = FHE.HEval[f](cx) = cr(n)-

Verifying the Correctness

f1:= FHE.HEval[f], df = toABLFE.Digest(pp, f') ,
¢x = FHE.Enc(k, x) , (T, (Lio, Li1)i) = Garble(1", FHE.Dec(k, -)) ,
¢ = toABLFE.Enc(pp, dr, ¢, (Lio)i, (Li1)i)
(L;); = toABLFE.Dec(pp, f,c) , y = GEval(l', (L)) .

Want: y = f(x).
> By toABLFE, L; = L; r1(c[1.
> By FHE, fT(c.) = FHE.HEval[f](cc) = cf(x)-
> By GC, GEval(T', (Lj (1)) = FHE.Dec(k, cr(x)) = f(x).

Unpack the construction:

» fi .= FHEHEval[f], = fl = FHE.HEval[f] || (1 — FHE.HEval[f]).

> For f:{0,1}/ — {0,1}9, get 1 : {0,1}/Polv(nd) _; {0, 1}20poly(nd),

(Need to binary-compile FHE.HEval.)
Hence |pp| = I - poly(n, d), and |d¢| = O - poly(n, d) (or |d¢| = poly(n) with LOT).

«O> «Fr «=>»

« =

DA

Verifying the Efficiency

Unpack the construction:

» fT:= FHE.HEval[f], toABLFE uses fi = FHE.HEval[f] || (1 — FHE.HEval[f]).
(Need to binary-compile FHE.HEval.)

Verifying the Efficiency

Unpack the construction:

» fT:= FHE.HEval[f], toABLFE uses fi = FHE.HEval[f] || (1 — FHE.HEval[f]).
(Need to binary-compile FHE.HEval.)

> For f:{0,1}/ — {0,1}9, get 1 : {0, 1}/Polv(nd) _; {0 1}20poly(n.d)

Verifying the Efficiency

Unpack the construction:

» fT:= FHE.HEval[f], toABLFE uses fi = FHE.HEval[f] || (1 — FHE.HEval[f]).
(Need to binary-compile FHE.HEval.)

> For f:{0,1}/ — {0,1}9, get 1 : {0, 1}/Polv(nd) _; {0 1}20poly(n.d)
Hence |pp| = I - poly(n, d), and |df| = O - poly(n, d) (or |d¢| = poly(n) with LOT).

Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:
» Add H ¢ ZZXNM to pp, use CI';— =dr + (ZiE[N] r,-JH,-)J-E[O] for rij < {0, 1}

Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:
» Add H ¢ ZZXNM to pp, use d,lr =dr + (ZiE[N] r,-JH,-)J-E[O] for rij < {0, 1}
> Also encrypt ¢/, =s' H+e/,=s' (H-0®G) +e/,.

Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:
» Add H ¢ ZZXNM to pp, use d,lr =dr + (ZiE[N] r,-JH,-)J-E[O] for rij < {0, 1}
> Also encrypt ¢/, =s' H+e/,=s' (H-0®G) +e/,.
> Interpretation: hide f by f/(x,x’) := f(x) + x" - R (over Zq integers), R = (r;)i;.

Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:
» Add H ¢ ZZXNM to pp, use CI',I; =dr + (ZiE[N] r,-JH,-)J-E[O] for rij < {0, 1}
> Also encrypt ¢/, =s' H+e/,=s' (H-0®G) +e/,.
> Interpretation: hide f by f/(x,x’) := f(x) + x" - R (over Zq integers), R = (r;)i;.

More direct construction:
» “Dual use” technique [BTVW17]: take GSW FHE, reuse key s in ABLFE.Enc.

Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:
» Add H ¢ ZZXNM to pp, use CI',I; =dr + (ZiE[N] r,-JH,-)J-E[O] for rij < {0, 1}
> Also encrypt ¢/, =s' H+e/,=s' (H-0®G) +e/,.
> Interpretation: hide f by f/(x,x’) := f(x) + x" - R (over Zq integers), R = (r;)i;.

More direct construction:

» “Dual use” technique [BTVW17]: take GSW FHE, reuse key s in ABLFE.Enc.
» No garbling, directly encrypt s' (M — ¢, ® G) +e].

Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:
» Add H ¢ ZZXNM to pp, use CI',I; =dr + (ZiE[N] r,-JH,-)J-E[O] for rij < {0, 1}
> Also encrypt ¢/, =s' H+e/,=s' (H-0®G) +e/,.
> Interpretation: hide f by f/(x,x’) := f(x) + x" - R (over Zq integers), R = (r;)i;.

More direct construction:
» “Dual use” technique [BTVW17]: take GSW FHE, reuse key s in ABLFE.Enc.
» No garbling, directly encrypt s' (M — ¢, ® G) +e].
» “Automatic decryption”: by GSW, can extract f(x) from ST(Cf(X) ®G)+el.

References

B

=) & & &

Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy.

Fully key-homomorphic encryption, arithmetic circuit ABE, and compact garbled circuits.

In EUROCRYPT, 2014.

Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee.
Private constrained PRFs (and more) from LWE.
In TCC, 2017.

Chongwon Cho, Nico Déttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni Polychroniadou.
Laconic oblivious transfer and its applications.
In CRYPTO, 2017.

Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
Reusable garbled circuits and succinct functional encryption.
In STOC, 2013.

Craig Gentry, Amit Sahai, and Brent Waters.

Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based.

In CRYPTO, 2013.

Willy Quach, Hoeteck Wee, and Daniel Wichs.
Laconic function evaluation and applications.
In FOCS, 2018.

