Lattice-based Laconic Function Evaluation (LFE)

Yi Tang

October 10, 2024



Definition of LFE

Syntax [QWW18]:

Y

Dec [f]




Definition of LFE

Syntax [QWW18]:

pp —

Y

®

Properties:

» Correctness: y = f(x).

Dec [f]




Definition of LFE

Syntax [QWW18]:

pp — Digest [f] —— df

Properties:

Y

Dec[f]——— ¥

» Correctness: y = f(x).
» Security: Enc(pp, df, x) ~ S(pp, f, df, f(x)); adaptive: f,x chosen by A(pp).



Definition of LFE

Syntax [QWW18]:

pp — Digest [f] —— df

Properties:

Y

Dec[f]——— ¥

» Correctness: y = f(x).
» Security: Enc(pp, df, x) ~ S(pp, f, df, f(x)); adaptive: f,x chosen by A(pp).
» Efficiency: laconic, |pp|, |df| < |f].



Motivation: f = fp for a large dataset D.
Applications:

» “Online-optimized” MPC.

then reusable garbled circuit by [GKPT13].

> “Bob-optimized” 2-round 2PC. (Cf., FHE solution is “Alice-optimized”.)
» (Alternative construction of) succinct (1-key) functional encryption (FE),
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Applications of LFE

Motivation: f = fp for a large dataset D.

Applications:
» “Bob-optimized” 2-round 2PC. (Cf., FHE solution is “Alice-optimized”.)
» “Online-optimized” MPC.

» (Alternative construction of) succinct (1-key) functional encryption (FE),
then reusable garbled circuit by [GKPT13].



Recap 1/3: Learning with Errors (LWE)

LWE:
> Take A <+ Zg*™,s « Zg, and sufficiently large noise e.

> Then (A;s'A+e)~ (A; U), by hardness of lattice problems (e.g. SVP).



Gadget g :=(1,2,...,21), G, :=1,®¢g € ng”e, ¢ =Tlog,q].
GSW FHE [GSW13]:
» Secret key k =s = (—5;1).
> By LWE, sample A = (A;'TA + e') satisfies A ~Uands'A=el ~07.
» Enc(k =s,x€{0,1}): C=A+x-
(For bit string (row vector) x, C=A+x® G.)

> HEvalP**[+]((C1,C2)) = C1 4+ C2 = (A1 + A2) + (x1 + x2) - G;
HEvaIp”b[x]((Cl. Cg)) = C1 . 71((:2) = (Al . 71(C2) + X1 - A2) + (X1X2) .
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Gadget g :=(1,2,...,21), G, :=1,®¢g € ZZX’M, ¢ = [log, q].
GSW FHE [GSW13]:
» Secret key k =s = (—5;1).
> By LWE, sample A = (A;5TA +eT) satisfies A~ U andsTA=eT ~07.
» Enc(k =s,x€{0,1}): C=A+x-G.
(For bit string (row vector) x, C=A+4+x® G.)

> HEvalP*®[+]((C1,Ca)) = C1 + Co = (A1 + A2) + (x1 + x2) - G;
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Recap 3/3: GSW/BGGHNSVV Homomorphism

HEva|pUb[+]((C1, C2)) =C;1+GC, = (A1 + Az) + (X1 + Xg) -G
HEvalP**[x]((C1,C2)) = C1 - G Y(Cp) = (A1 - G HCa) + x1 - Ap) + (x1x2) - G

BGGHNSVV ABE's attribute encoding [BGG14]:
» Take uniform M (cf. C) and attribute encoding A =M — x ® G.
» Same HEvalP'® over M.
> HEV3|[+]((A17 AQ)? (_7 _)7 (_7 _)) = A1 + Ay,
HEV3|[><]((A1, Ag), (—, Mz), (Xl, —)) =A;- G_I(M2) + x1 - Ao,
» S.t., HEval[f](A, M, x) = HEval’*®[f](M) — f(x) ® G.
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Attribute-based LFE (AB-LFE)

Syntax: (ABE-like, public x and secret )

pp — Digest [f] —— df
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Properties:

» Correctness: ;' = p when f(x) = 0.

» Security: ¢ hides p.

Enc|x]

A

Dec [f, x]

[when f(/x) = 0]

L

Interpretation: LFE for “conditional disclosure” #(x, u) := (x, - (1 — £(x))).

Generalization: f(x) € {0,1}9, have p1, ..., 1o, and require 1; = pj when fi(x) = 0.
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Construction: Suppose f : {0,1} — {0,1}°.
» Setup(1”): pp=M «+ nglne_
» Digest(M, f): dr = M¢ = HEvalP*®[f](M) ¢ ngOn@_
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AB-LFE from LWE

Construction: Suppose f : {0,1} — {0,1}9.
» Setup(1”): pp=M «+ ZZX’”Z.
> Digest(M, f): dr = My = HEval*[f]|(M) € Z7*O.
> Enc(M, Mg, x, 1 € {0,1}9): sample s + Zg and LWE errors ey, e, sample
Rj « G 1(U(zg*h)) € {0,131, output ¢ = (R, ¢y, ¢,) where R = diag({R;};),
cl=s"(M-—x®G)+el ZZ’E , cl :STMfR+e/I—‘,— lq/2] - eZ(?L .
A

» Dec(M,f,x,(R,cy,cy,)): compute c;X = HEval[f](c, , M, x), and for f;(x) = 0,
extract p; by checking |c;:XR — c;—\ > q/4 on the j-th block.

Correctness: by CIX ~s' (Mf — f(x) ® G). Security: by LWE.
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Enhancing AB-LFE

Two-outcome mode of ABE/AB-LFE:
» Normal mode: Dec outputs p if f(x) =0 and L otherwise.
» Two-outcome mode: Enc takes (9, (1), and Dec outputs p(f(x)).
» Construction: apply ABX to f := f || (1 — f).

Further compressing digest: By laconic OT [CDG"17], can improve |df| from
O - poly(n, d) (d is depth of f) to just poly(n).
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Last Piece: Garbled Circuit

Syntax: (f : {0,1}/ — {0,1}9))
> Garble(1”, f): output garbled circuit I and labels (L; g, L,-yl),-E[,].
> GEval(T, (L)i[): output evaluation y.

Correctness: GEval(T, (Li x)ic[n) = f(x).

Yao's construction: gate by gate, so |['| = |f| - poly(n); also |L; | = poly(n).
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Constructing LFE

Ingredients: two-outcome AB-LFE (toABLFE), FHE, garbled circuit (GC).

Construction:
» Setup(1”): same as toABLFE.Setup.
» Digest(pp, f): f1 := FHE.HEval[f], output df = toABLFE.Digest(pp, f1).
» Enc(pp, df, x):
sample FHE secret k + FHE.Gen(1"), compute ¢, = FHE.Enc(k, x),
compute (T, (Lo, Li1)i) = Garble(1", FHE.Dec(k, -)),
compute ¢ = toABLFE.Enc(pp, df, cx, (Lio)i, (Li1)i),
output ¢’ = (T, ¢).
> Dec(pp, f, (T, c)): (L;); = toABLFE.Dec(pp, f, ), output y = GEval(T, (L;);).
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f1:= FHE.HEval[f],  df = toABLFE.Digest(pp, f') ,
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Verifying the Correctness

f1:= FHE.HEval[f],  df = toABLFE.Digest(pp, f') ,
¢x = FHE.Enc(k, x) , (T, (Lio, Li1)i) = Garble(1", FHE.Dec(k, -)) ,
¢ = toABLFE.Enc(pp, dr, ¢, (Lio)i, (Li1)i)
(L;); = toABLFE.Dec(pp, f,c) ,  y = GEval(l', (L)) .

Want: y = f(x).
> By toABLFE, L; = L; r1(c[1.
> By FHE, fT(c.) = FHE.HEval[f](cc) = cf(x)-
> By GC, GEval(T', (Lj (1)) = FHE.Dec(k, cr(x)) = f(x).



Unpack the construction:

» fi .= FHEHEval[f], = fl = FHE.HEval[f] || (1 — FHE.HEval[f]).

> For f:{0,1}/ — {0,1}9, get 1 : {0,1}/Polv(nd) _; {0, 1}20poly(nd),

(Need to binary-compile FHE.HEval.)
Hence |pp| = I - poly(n, d), and |d¢| = O - poly(n, d) (or |d¢| = poly(n) with LOT).
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Verifying the Efficiency
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Verifying the Efficiency

Unpack the construction:

» fT:= FHE.HEval[f], toABLFE uses fi = FHE.HEval[f] || (1 — FHE.HEval[f]).
(Need to binary-compile FHE.HEval.)

> For f:{0,1}/ — {0,1}9, get 1 : {0, 1}/Polv(nd) _; {0 1}20poly(n.d)
Hence |pp| = I - poly(n, d), and |df| = O - poly(n, d) (or |d¢| = poly(n) with LOT).
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Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:
» Add H ¢ ZZXNM to pp, use CI',I; =dr + (ZiE[N] r,-JH,-)J-E[O] for rij < {0, 1}
> Also encrypt ¢/, =s' H+e/,=s' (H-0®G) +e/,.
> Interpretation: hide f by f/(x,x’) := f(x) + x" - R (over Zq integers), R = (r;)i;.

More direct construction:

» “Dual use” technique [BTVW17]: take GSW FHE, reuse key s in ABLFE.Enc.
» No garbling, directly encrypt s' (M — ¢, ® G) +e].



Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:
» Add H ¢ ZZXNM to pp, use CI',I; =dr + (ZiE[N] r,-JH,-)J-E[O] for rij < {0, 1}
> Also encrypt ¢/, =s' H+e/,=s' (H-0®G) +e/,.
> Interpretation: hide f by f/(x,x’) := f(x) + x" - R (over Zq integers), R = (r;)i;.

More direct construction:
» “Dual use” technique [BTVW17]: take GSW FHE, reuse key s in ABLFE.Enc.
» No garbling, directly encrypt s' (M — ¢, ® G) +e].
» “Automatic decryption”: by GSW, can extract f(x) from ST(Cf(X) ®G)+el.
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