Motivation: Gaussian Pancakes
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Figure 1: (Unnormalized) densities of a noisy discrete Gaussian (blue) and the standard

(Gaussian

The Gaussian pancakes distribution is a noisy discrete Gaussian (blue) in
one hidden direction. In other n — 1 directions, the distribution is

We also call this distribution the homogeneous Continuous Learning
with Errors (hCLWE) distribution, for reasons we explain later.
Our work is motivated by the following open question by [BLPR19]:

“Can poly-time algorithms distinguish the Gaussian pancakes
distribution from the standard Gaussian in high-dimensions?”

We answer this in the negative.

Previous Work: SQ-Hardness of Gaussian Pancakes

Distinguishing Gaussian pancakes from the standard Gaussian is SQ-hard.

o Def. A statistical query (SQ) algorithm accesses the input
distribution only indirectly from noisy expectations. It can query the
distribution with any bounded function f : R" — [—1,1], and receive a
noisy version of E[f(x)|, instead of getting individual samples.

e Thm [DKS17]. Statistical query (SQ) algorithms cannot distinguish
Gaussian pancakes from the standard Gaussian using polynomially
many queries (even with exponentially small noise).

e Thm [BLPR19]. Still SQ-hard when you have multiple discrete
directions (Gaussian “baguettes”).

Notice that all previous hardness results apply only to SQ algorithms. Of
course, Q) algorithms are powerful and capture many known methods, but the
question of whether the hardness of this distinguishing task extends beyond
SQ algorithms was open.
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Implications of Hardness of Gaussian Pancakes

e [DKS17]: Improperly learning (= density estimation) Gaussian
mixtures is SQ-hard, even for a mixture with nearly
non-overlapping components.

e [BLPR19]: Learning robust classifiers® is SQ-hard, even when
they exist, are learnable information-theoretically with polynomially

many samples, and learning a non-robust classifier is easy.
x Robust in the sense that the classifier is not vulnerable to small input perturbations.

Our Result: Hardness of Gaussian Pancakes

Distinguishing Gaussian pancakes, with spacing 1/ less than 1/(24/n), from
the standard Gaussian with accuracy slightly (inverse-polynomially)
better than chance is computationally hard, unless there are polynomial-
time quantum algorithms for fundamental worst-case lattice problems.

x can be any inverse polynomial.
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Figure 2: The hCLWE distribution is characterized by two parameters 8 and . The param-

eter (7 controls the pancake and v controls the spacing between pancakes.

This implies that assuming some worst-case lattice problems cannot be solved
by polynomial-time quantum algorithms ...

o Distinguishing Gaussian pancakes/baguettes from the standard
Gaussian is hard for any poly-time algorithm.

e Improperly learning Gaussian mixtures is hard for any poly-time
algorithm, even when the mixture components are nearly
non-overlapping.

e There is a binary classification task for which a robust classifier exists,
is learnable info-theoretically with polynomially many samples, and a
non-robust classifier is easy to learn, but learning a robust classifier
is hard for any poly-time algorithm.

Our result is an average-case hardness result based on worst-case
hardness assumptions. Only a few hardness of improper learning results
are based on worst-case hardness, e.g., [KS06].

Hardness of (h)CLWE: Proof Overview

We prove a stronger hardness result, for a relaxed problem named (inhomo-

geneous) CLWE, defined below.

Def. CLWEg .: To decide whether the given samples of the form (y, z) with
y ~ N (0, I;) have either
® periodic “colors” z along some secret direction w € R" i.e.,
z = (v(y,w) + e) mod 1 where e ~ N(0, 3), or
® uniformly random “colors” z € [0, 1).
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Figure 3: The CLWE distribution has periodic colors along some secret direction.
hCLWEg ., samples are roughly CLWEg - samples with z = 0.

We show the hardness results by reducing worst-case lattice problems to
CLWE, and reducing CLWE to hCLWE via rejection sampling by z ~ 0.

Hardness of CLWE. [Reg05] first gave a quantum reduction from a worst-
case lattice problem called GapSVPO<n /@) (See below for a definition) to

LWEq o (for ag > 24/n), showing the hardness of LWE.
We follow the more recent framework of [PRS17|, and reduce GapSVP()(n /8)

to CLWEg , for any polynomial v > 2y/n and inverse-polynomial 8 € (0,1).

Lattices and lattice problems. For a basis by, ..., b, of R", the lattice
L generated by the basis is the set of all integer linear combinations of the
basis vectors. The minimum distance \1(£) is the shortest length of nonzero
lattice vectors in lattice L.

Def. The Gap Shortest Vector Problem (GapSVP,): To decide whether
AM(L) < 1or A(L) > ¢ for a given lattice L.

GapSVP, is believed to be computationally hard (even quantumly) for any
polynomial ¢ = p(n).

Analogies Between LWE and CLWE

Def. The Learning With Errors problem (LWE, ,): To decide whether the
given samples of the form (a,b) with @ ~ Z; have either

© periodic b along some secret s € Z[!, i.e., b= ({(a,s)/q+ e) mod 1,
where e ~ N (0, ), or
® uniformly random b € [0,1).
* By discretizing with ' = |q - b| € Z,, the search problem (to find secret s) can be viewed

as solving system of linear equations with errors over Z,, of the form ¢ = (a, s) + €.

secret w € S 1
samples (y, 2)

secret s € Zg”
samples (a, b)

a~ Z; y ~ N(0, 1)
b= ({a,s)/qg+e)mod 1 z = (y{y,w)+e) mod 1
e ~ N(0, ) e ~ N(0, 3)
- q Inverse spacing -y

Other Results Related to CLWE

Noise is necessary for hardness.

e Noiseless CLWE can be efficiently solved with LLL (or even CLWE with
exponentially small noise [SZB21]).

e Analogous to solving noiseless LWE with Gaussian elimination.

e Bypasses SO-hardness since LLL inspects samples individually.
Subexponential algorithms for hCLWE with v = o(y/n).

e Simply compute covariance using exp(’yQ) many samples.

e Analogous to the Arora-Ge algorithm for LWE [AG11].
Gaussian pancakes with uniform-spacing is SQ-hard.

o Technically, the Gaussian pancakes of [DKS17| and [BLPR19] have

non-uniform spacing between the pancakes, whereas our spacing is
uniform. Our SQ-hardness result for uniform-spacing shows that we
have not changed the distinguishing problem’s difficulty too much by
changing the spacing between the Gaussian pancakes.

Follow-up Work and Conclusion

Follow-up work by [SZB21] observes that CLWE hardness also implies hard-
ness of learning high-dimensional cosines (“cosine neurons”) of the form
f(x) = cos(2my(w, x)) over the Gaussian input distribution if small (inverse-
polynomial) label noise is added. Hence, hardness of CLWE implies the hard-
ness of this seemingly simple supervised improper learning task as well.

Together with our result on hardness of learning Gaussian mixtures, this
shows the versatility of CLWE/hCLWE as a primitive for showing hardness
of improper learning.



