

Improved Hardness of BDD and SVP under Gap-(S)ETH

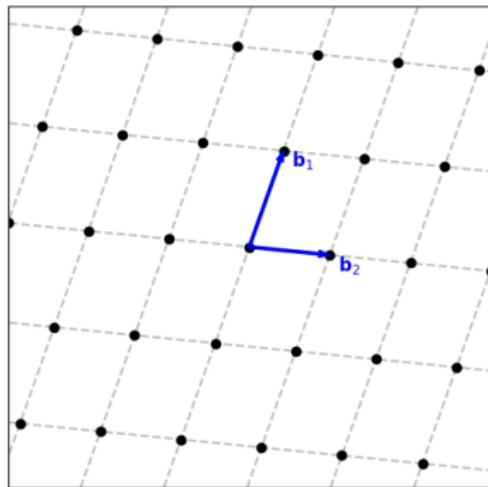
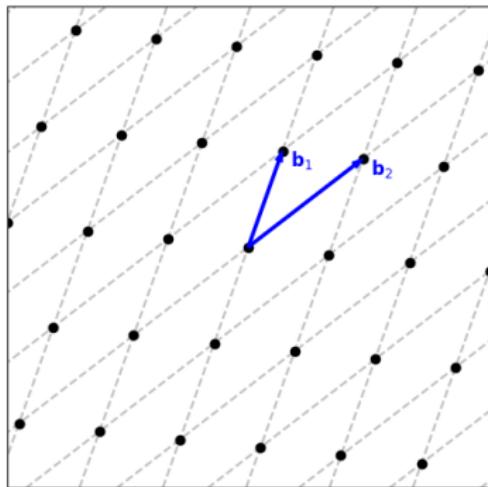
Huck Bennett, Chris Peikert, Yi Tang

ITCS 2022

Preliminaries: Lattices

Lattice: regular grid of points in space.

Formally, lattice \mathcal{L} of rank n : set of all *integer* linear combinations of a basis $\mathcal{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$.



Preliminaries: Lattice-Based Cryptography

Problem: Attacker with quantum computation can break number theoretical cryptography.

Solution: Use lattice-based cryptography!

Fact: State-of-the-art attacks are based on solving exact or low-approximation-factor lattice problems (e.g. *SVP*).

Problem: Whether attacker can solve these problems in 2^n vs. $2^{n/10}$ vs. $2^{\sqrt{n}}$ time has a huge impact on security.

Our work: Address this by showing *fine-grained* hardness results for lattice problems.

Preliminaries: Lattice-Based Cryptography

Problem: Attacker with quantum computation can break number theoretical cryptography.

Solution: Use lattice-based cryptography!

Fact: State-of-the-art attacks are based on solving exact or low-approximation-factor lattice problems (e.g. *SVP*).

Problem: Whether attacker can solve these problems in 2^n vs. $2^{n/10}$ vs. $2^{\sqrt{n}}$ time has a huge impact on security.

Our work: Address this by showing *fine-grained* hardness results for lattice problems.

Preliminaries: Lattice-Based Cryptography

Problem: Attacker with quantum computation can break number theoretical cryptography.

Solution: Use lattice-based cryptography!

Fact: State-of-the-art attacks are based on solving exact or low-approximation-factor lattice problems (e.g. *SVP*).

Problem: Whether attacker can solve these problems in 2^n vs. $2^{n/10}$ vs. $2^{\sqrt{n}}$ time has a huge impact on security.

Our work: Address this by showing *fine-grained* hardness results for lattice problems.

Preliminaries: Lattice-Based Cryptography

Problem: Attacker with quantum computation can break number theoretical cryptography.

Solution: Use lattice-based cryptography!

Fact: State-of-the-art attacks are based on solving exact or low-approximation-factor lattice problems (e.g. *SVP*).

Problem: Whether attacker can solve these problems in 2^n vs. $2^{n/10}$ vs. $2^{\sqrt{n}}$ time has a huge impact on security.

Our work: Address this by showing *fine-grained* hardness results for lattice problems.

Preliminaries: Lattice-Based Cryptography

Problem: Attacker with quantum computation can break number theoretical cryptography.

Solution: Use lattice-based cryptography!

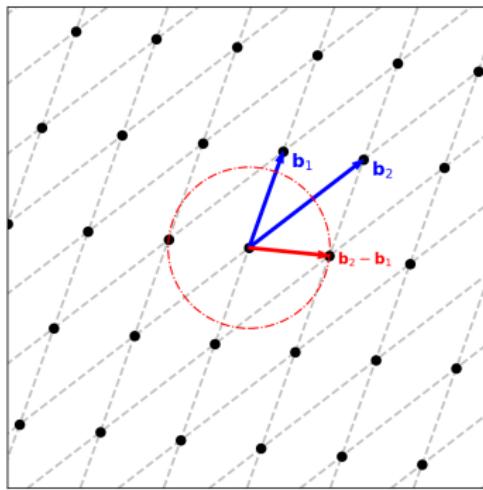
Fact: State-of-the-art attacks are based on solving exact or low-approximation-factor lattice problems (e.g. *SVP*).

Problem: Whether attacker can solve these problems in 2^n vs. $2^{n/10}$ vs. $2^{\sqrt{n}}$ time has a huge impact on security.

Our work: Address this by showing *fine-grained* hardness results for lattice problems.

Preliminaries: Shortest Vector Problem (SVP)

Shortest ℓ_p norm of nonzero vector in lattice \mathcal{L} : $\lambda_1^{(p)}(\mathcal{L})$.



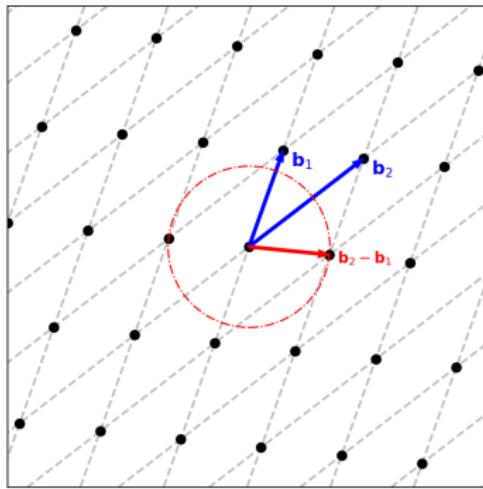
γ -approximate SVP in ℓ_p ($\text{SVP}_{p,\gamma}$)

Instance: Basis B of lattice \mathcal{L} .

Goal: Decide whether $\lambda_1^{(p)}(\mathcal{L}) \leq 1$ or $\lambda_1^{(p)}(\mathcal{L}) > \gamma$.

Preliminaries: Shortest Vector Problem (SVP)

Shortest ℓ_p norm of nonzero vector in lattice \mathcal{L} : $\lambda_1^{(p)}(\mathcal{L})$.



γ -approximate SVP in ℓ_p ($\text{SVP}_{p,\gamma}$)

Instance: Basis \mathcal{B} of lattice \mathcal{L} .

Goal: Decide whether $\lambda_1^{(p)}(\mathcal{L}) \leq 1$ or $\lambda_1^{(p)}(\mathcal{L}) > \gamma$.

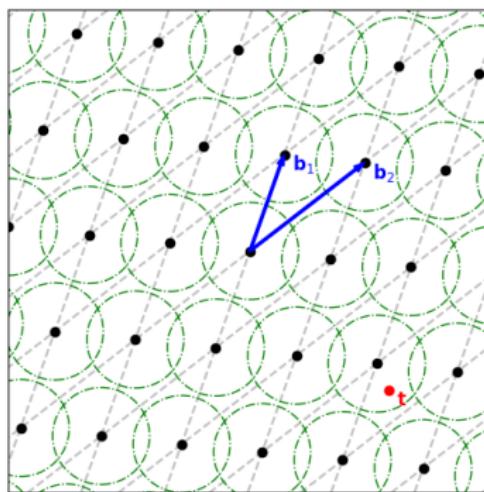
Preliminaries: Bounded Distance Decoding (BDD)

BDD in ℓ_p with relative distance α ($\text{BDD}_{p,\alpha}$)

Instance: Lattice \mathcal{L} and target \mathbf{t} with $\text{dist}_p(\mathbf{t}, \mathcal{L}) \leq \alpha \cdot \lambda_1^{(p)}(\mathcal{L})$.

Goal: Find closest lattice vector to \mathbf{t} in \mathcal{L} .

Smaller α corresponds to stronger promise and easier problem.



$$(p = 2, \alpha = 0.6)$$

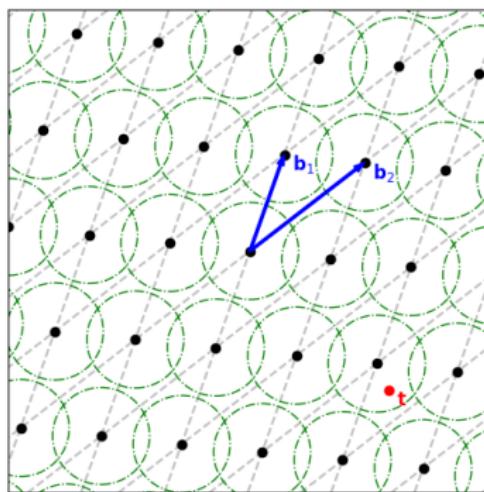
Preliminaries: Bounded Distance Decoding (BDD)

BDD in ℓ_p with relative distance α ($\text{BDD}_{p,\alpha}$)

Instance: Lattice \mathcal{L} and target \mathbf{t} with $\text{dist}_p(\mathbf{t}, \mathcal{L}) \leq \alpha \cdot \lambda_1^{(p)}(\mathcal{L})$.

Goal: Find closest lattice vector to \mathbf{t} in \mathcal{L} .

Smaller α corresponds to stronger promise and easier problem.



$$(p = 2, \alpha = 0.6)$$

Preliminaries: Exponential Time Hypothesis (ETH)

ETH variants:

- ▶ ETH: 3-SAT cannot be solved in $2^{o(n)}$ time.
- ▶ Strong ETH (SETH): k -SAT cannot be solved in $2^{(1-\varepsilon)n}$ time.
- ▶ Gap-(S)ETH: Gap-3-SAT $_{1-\delta,1}$ & Gap- k -SAT $_{1-\delta(k),1}$.
- ▶ Randomized/non-uniform variants.

Our work exploits the power of different ETH variants, showing stronger hardness results for BDD/SVP under stronger variants.

We reduce SAT on n variables to lattice problems in rank $C \cdot n$ for constant $C > 0$ to show fine-grained hardness results.

Line of research in fine-grained hardness of lattice problems:

CVP [BGS17, ABGS21], *SVP* [AS18], *BDD* [BP20], *SIVP* [AC20].

Preliminaries: Exponential Time Hypothesis (ETH)

ETH variants:

- ▶ ETH: 3-SAT cannot be solved in $2^{o(n)}$ time.
- ▶ Strong ETH (SETH): k -SAT cannot be solved in $2^{(1-\varepsilon)n}$ time.
- ▶ Gap-(S)ETH: Gap-3-SAT $_{1-\delta,1}$ & Gap- k -SAT $_{1-\delta(k),1}$.
- ▶ Randomized/non-uniform variants.

Our work exploits the power of different ETH variants, showing stronger hardness results for BDD/SVP under stronger variants.

We reduce SAT on n variables to lattice problems in rank $C \cdot n$ for constant $C > 0$ to show fine-grained hardness results.

Line of research in fine-grained hardness of lattice problems:

CVP [BGS17, ABGS21], *SVP* [AS18], *BDD* [BP20], *SIVP* [AC20].

Preliminaries: Exponential Time Hypothesis (ETH)

ETH variants:

- ▶ ETH: 3-SAT cannot be solved in $2^{o(n)}$ time.
- ▶ Strong ETH (SETH): k -SAT cannot be solved in $2^{(1-\varepsilon)n}$ time.
- ▶ Gap-(S)ETH: Gap-3-SAT $_{1-\delta,1}$ & Gap- k -SAT $_{1-\delta(k),1}$.
- ▶ Randomized/non-uniform variants.

Our work exploits the power of different ETH variants, showing stronger hardness results for BDD/SVP under stronger variants.

We reduce SAT on n variables to lattice problems in rank $C \cdot n$ for constant $C > 0$ to show fine-grained hardness results.

Line of research in fine-grained hardness of lattice problems:

CVP [BGS17, ABGS21], *SVP* [AS18], *BDD* [BP20], *SIVP* [AC20].

Preliminaries: Exponential Time Hypothesis (ETH)

ETH variants:

- ▶ ETH: 3-SAT cannot be solved in $2^{o(n)}$ time.
- ▶ Strong ETH (SETH): k -SAT cannot be solved in $2^{(1-\varepsilon)n}$ time.
- ▶ Gap-(S)ETH: Gap-3-SAT $_{1-\delta,1}$ & Gap- k -SAT $_{1-\delta(k),1}$.
- ▶ Randomized/non-uniform variants.

Our work exploits the power of different ETH variants, showing stronger hardness results for BDD/SVP under stronger variants.

We reduce SAT on n variables to lattice problems in rank $C \cdot n$ for constant $C > 0$ to show fine-grained hardness results.

Line of research in fine-grained hardness of lattice problems:

CVP [BGS17, ABGS21], *SVP* [AS18], *BDD* [BP20], *SIVP* [AC20].

Preliminaries: Exponential Time Hypothesis (ETH)

ETH variants:

- ▶ ETH: 3-SAT cannot be solved in $2^{o(n)}$ time.
- ▶ Strong ETH (SETH): k -SAT cannot be solved in $2^{(1-\varepsilon)n}$ time.
- ▶ Gap-(S)ETH: Gap-3-SAT $_{1-\delta,1}$ & Gap- k -SAT $_{1-\delta(k),1}$.
- ▶ Randomized/non-uniform variants.

Our work exploits the power of different ETH variants, showing stronger hardness results for BDD/SVP under stronger variants.

We reduce SAT on n variables to lattice problems in rank $C \cdot n$ for constant $C > 0$ to show fine-grained hardness results.

Line of research in fine-grained hardness of lattice problems:

CVP [BGS17, ABGS21], *SVP* [AS18], *BDD* [BP20], *SIVP* [AC20].

Preliminaries: Exponential Time Hypothesis (ETH)

ETH variants:

- ▶ ETH: 3-SAT cannot be solved in $2^{o(n)}$ time.
- ▶ Strong ETH (SETH): k -SAT cannot be solved in $2^{(1-\varepsilon)n}$ time.
- ▶ Gap-(S)ETH: Gap-3-SAT $_{1-\delta,1}$ & Gap- k -SAT $_{1-\delta(k),1}$.
- ▶ Randomized/non-uniform variants.

Our work exploits the power of different ETH variants, showing stronger hardness results for BDD/SVP under stronger variants.

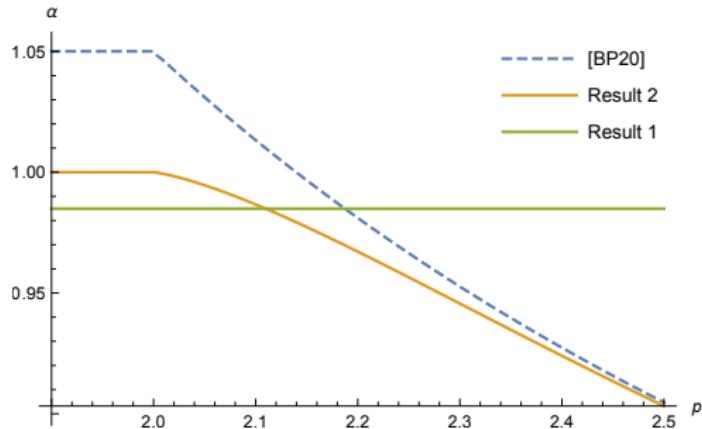
We reduce SAT on n variables to lattice problems in rank $C \cdot n$ for constant $C > 0$ to show fine-grained hardness results.

Line of research in fine-grained hardness of lattice problems:

CVP [BGS17, ABGS21], *SVP* [AS18], *BDD* [BP20], *SIVP* [AC20].

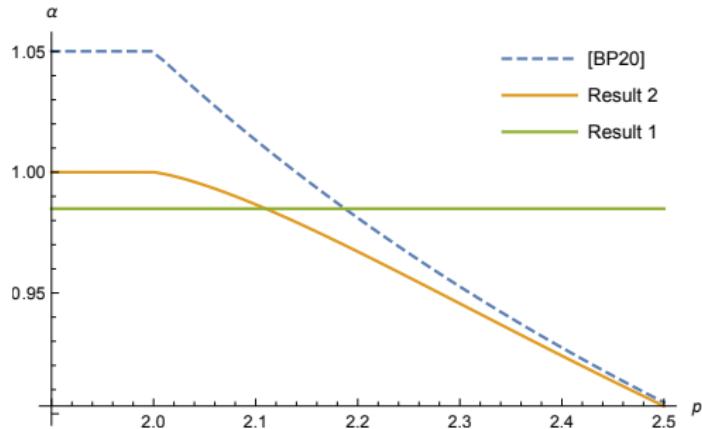
Our Results: ETH-Type Hardness of BDD

1. $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{o(n)}$ time for any $p \in [1, \infty)$ and $\alpha > \alpha_{\text{kn}} \approx 0.98491$, under non-uniform Gap-ETH.
2. $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{o(n)}$ time for any $p \in [1, \infty)$ and $\alpha > \alpha_p^\dagger$, under randomized Gap-ETH.



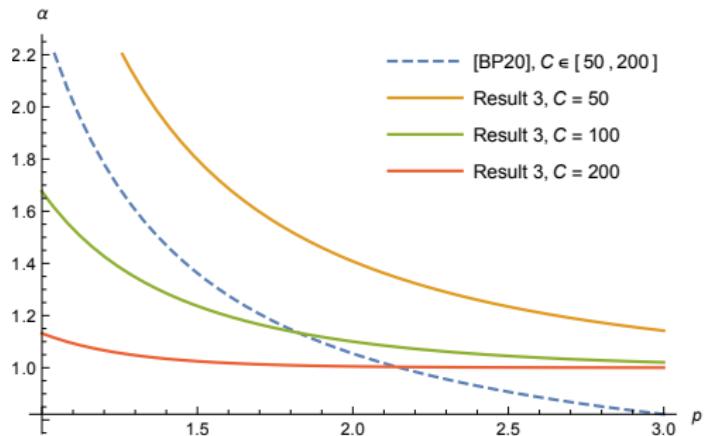
Our Results: ETH-Type Hardness of BDD

1. $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{o(n)}$ time for any $p \in [1, \infty)$ and $\alpha > \alpha_{\text{kn}} \approx 0.98491$, under non-uniform Gap-ETH.
2. $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{o(n)}$ time for any $p \in [1, \infty)$ and $\alpha > \alpha_p^\dagger$, under randomized Gap-ETH.



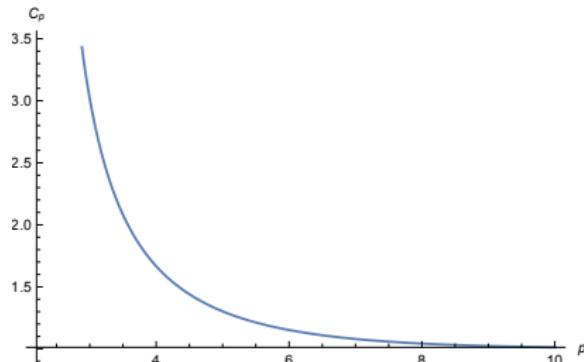
Our Results: SETH-Type Hardness of BDD

3. $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{n/C}$ time for any $p \in [1, \infty)$, $p \notin 2\mathbb{Z}$, $C > 1$, and $\alpha > \alpha_{p,C}^\dagger$, under non-uniform Gap-SETH.



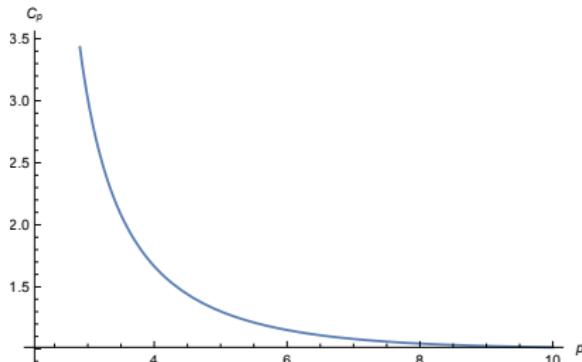
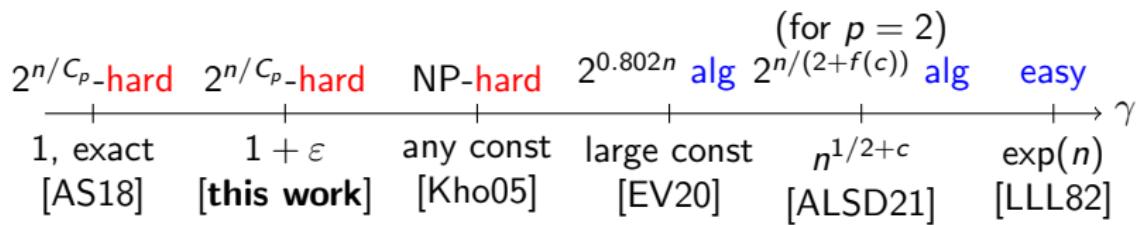
Our Results: SETH-Type Hardness of SVP

4. For any $p > p_0 \approx 2.1397$, $p \notin 2\mathbb{Z}$ and $C > C_p$, $\text{SVP}_{p,\gamma}$ cannot be solved in $2^{n/C}$ time for some constant $\gamma > 1$, under randomized Gap-SETH. ($C_p \rightarrow 1$ for $p \rightarrow \infty$.)



Our Results: SETH-Type Hardness of SVP

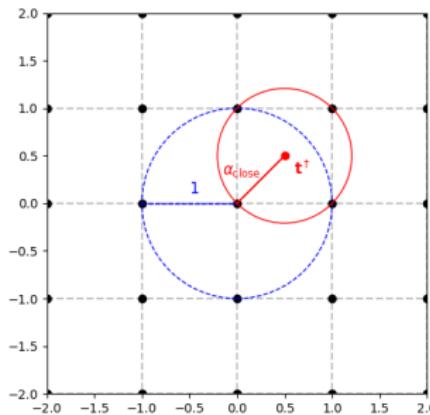
4. For any $p > p_0 \approx 2.1397$, $p \notin 2\mathbb{Z}$ and $C > C_p$, $\text{SVP}_{p,\gamma}$ cannot be solved in $2^{n/C}$ time for some constant $\gamma > 1$, under randomized Gap-SETH. ($C_p \rightarrow 1$ for $p \rightarrow \infty$.)



Core Proof Technique: Locally Dense Gadgets

Locally dense gadget $(\mathcal{L}^\dagger, \mathbf{t}^\dagger)$ in rank n :

- ▶ “Short” count: N_{short} lattice vectors of length less than 1.
- ▶ “Close” count: N_{close} lattice vectors of distance α_{close} to \mathbf{t}^\dagger .
- ▶ \mathcal{L}^\dagger is *locally dense* at \mathbf{t}^\dagger if $N_{\text{close}} \geq \nu^n \cdot N_{\text{short}}$, i.e., exponentially more “close” than “short” lattice vectors.
- ▶ Quality parameters: α_{close} and ν .

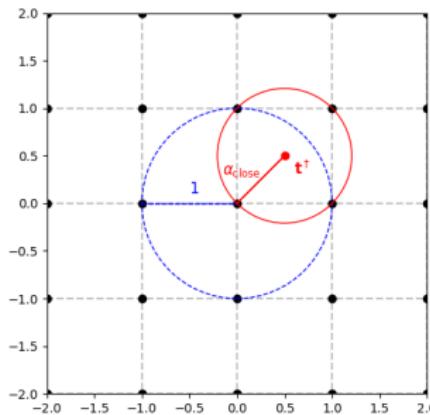


$$(n = 2, \mathcal{L}^\dagger = \mathbb{Z}^2, \mathbf{t}^\dagger = (\frac{1}{2}, \frac{1}{2}), \alpha_{\text{close}} = \frac{\sqrt{2}}{2}, \nu^n = 4)$$

Core Proof Technique: Locally Dense Gadgets

Locally dense gadget $(\mathcal{L}^\dagger, \mathbf{t}^\dagger)$ in rank n :

- ▶ “Short” count: N_{short} lattice vectors of length less than 1.
- ▶ “Close” count: N_{close} lattice vectors of distance α_{close} to \mathbf{t}^\dagger .
- ▶ \mathcal{L}^\dagger is *locally dense* at \mathbf{t}^\dagger if $N_{\text{close}} \geq \nu^n \cdot N_{\text{short}}$, i.e., exponentially more “close” than “short” lattice vectors.
- ▶ Quality parameters: α_{close} and ν .

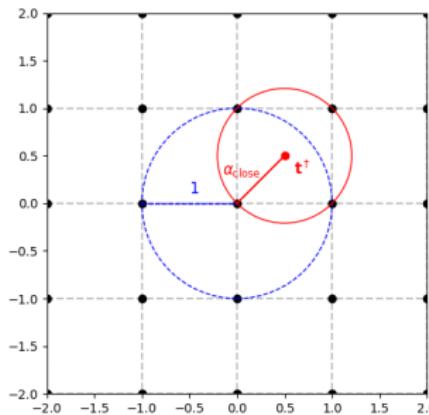


$$(n = 2, \mathcal{L}^\dagger = \mathbb{Z}^2, \mathbf{t}^\dagger = (\frac{1}{2}, \frac{1}{2}), \alpha_{\text{close}} = \frac{\sqrt{2}}{2}, \nu^n = 4)$$

Core Proof Technique: Locally Dense Gadgets

Locally dense gadget $(\mathcal{L}^\dagger, \mathbf{t}^\dagger)$ in rank n :

- ▶ “Short” count: N_{short} lattice vectors of length less than 1.
- ▶ “Close” count: N_{close} lattice vectors of distance α_{close} to \mathbf{t}^\dagger .
- ▶ \mathcal{L}^\dagger is *locally dense* at \mathbf{t}^\dagger if $N_{\text{close}} \geq \nu^n \cdot N_{\text{short}}$, i.e., exponentially more “close” than “short” lattice vectors.
- ▶ Quality parameters: α_{close} and ν .



$$(n = 2, \mathcal{L}^\dagger = \mathbb{Z}^2, \mathbf{t}^\dagger = (\frac{1}{2}, \frac{1}{2}), \alpha_{\text{close}} = \frac{\sqrt{2}}{2}, \nu^n = 4)$$

Main Theorem for BDD

Main theorem for BDD, informal & simplified

If there exist locally dense gadgets $(\mathcal{L}^\dagger, \mathbf{t}^\dagger)$ with parameters α_{close} and ν , then for $\text{BDD}_{p,\alpha}$:

- ▶ it cannot be solved in $2^{o(n)}$ time for any $\alpha > \alpha_{\text{close}}$, under Gap-ETH variants;
- ▶ it cannot be solved in $2^{n/C}$ time for any

$$\alpha > \alpha_{\text{close}} + \varepsilon_p(\nu^{C-1}) ,$$

under Gap-SETH variants.¹

¹The function $\varepsilon_p(\cdot)$ is strictly decreasing, and $\varepsilon_p(x) \rightarrow 0$ as $x \rightarrow \infty$.

Main Theorem for BDD

Main theorem for BDD, informal & simplified

If there exist locally dense gadgets $(\mathcal{L}^\dagger, \mathbf{t}^\dagger)$ with parameters α_{close} and ν , then for $\text{BDD}_{p,\alpha}$:

- ▶ it cannot be solved in $2^{o(n)}$ time for any $\alpha > \alpha_{\text{close}}$, under Gap-ETH variants;
- ▶ it cannot be solved in $2^{n/C}$ time for any

$$\alpha > \alpha_{\text{close}} + \varepsilon_p(\nu^{C-1}) ,$$

under Gap-SETH variants.¹

¹The function $\varepsilon_p(\cdot)$ is strictly decreasing, and $\varepsilon_p(x) \rightarrow 0$ as $x \rightarrow \infty$.

Main Theorem for BDD

Main theorem for BDD, informal & simplified

If there exist locally dense gadgets $(\mathcal{L}^\dagger, \mathbf{t}^\dagger)$ with parameters α_{close} and ν , then for $\text{BDD}_{p,\alpha}$:

- ▶ it cannot be solved in $2^{o(n)}$ time for any $\alpha > \alpha_{\text{close}}$, under Gap-ETH variants;
- ▶ it cannot be solved in $2^{n/C}$ time for any

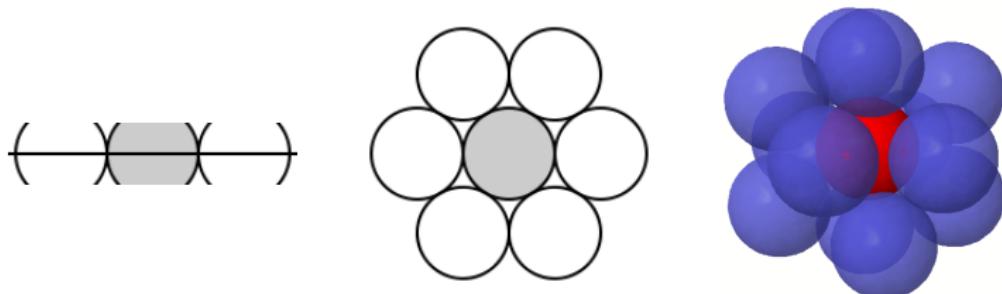
$$\alpha > \alpha_{\text{close}} + \varepsilon_p(\nu^{C-1}) ,$$

under Gap-SETH variants.¹

¹The function $\varepsilon_p(\cdot)$ is strictly decreasing, and $\varepsilon_p(x) \rightarrow 0$ as $x \rightarrow \infty$.

Gadgets We Use

[Vlă19]: There exist lattices \mathcal{L}^\dagger with *exponential kissing number*: $2^{c_{kn}n-o(n)}$ vectors of length $\lambda_1(\mathcal{L}^\dagger) = 1$, where $c_{kn} \geq 0.02194$.



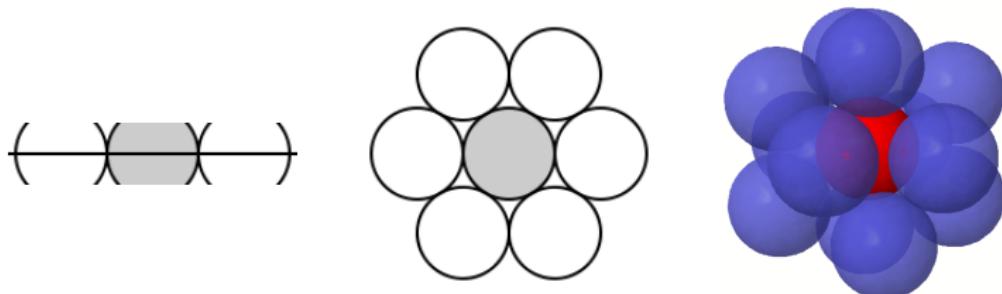
Gadgets from kissing number:

- ▶ **Gadgets:** exponential kissing number lattice \mathcal{L}^\dagger with $t^\dagger = \mathbf{0}$.
- ▶ **Parameters:** $\alpha_{close} = 1$, $\nu = 2^{c_{kn}}$.

Gadgets from integer lattices: $\mathcal{L}^\dagger = \mathbb{Z}^n$, $t^\dagger = t \cdot \mathbf{1}_n$.

Gadgets We Use

[Vlă19]: There exist lattices \mathcal{L}^\dagger with *exponential kissing number*: $2^{c_{kn}n-o(n)}$ vectors of length $\lambda_1(\mathcal{L}^\dagger) = 1$, where $c_{kn} \geq 0.02194$.



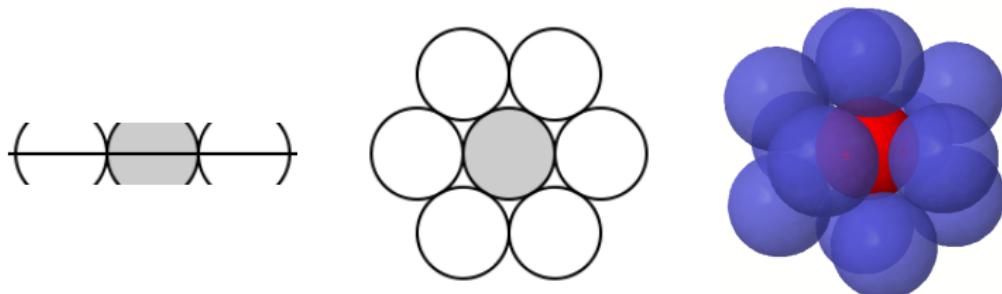
Gadgets from kissing number:

- ▶ **Gadgets:** exponential kissing number lattice \mathcal{L}^\dagger with $\mathbf{t}^\dagger = \mathbf{0}$.
- ▶ **Parameters:** $\alpha_{close} = 1$, $\nu = 2^{c_{kn}}$.

Gadgets from integer lattices: $\mathcal{L}^\dagger = \mathbb{Z}^n$, $\mathbf{t}^\dagger = t \cdot \mathbf{1}_n$.

Gadgets We Use

[Vlă19]: There exist lattices \mathcal{L}^\dagger with *exponential kissing number*: $2^{c_{kn}n-o(n)}$ vectors of length $\lambda_1(\mathcal{L}^\dagger) = 1$, where $c_{kn} \geq 0.02194$.



Gadgets from kissing number:

- ▶ **Gadgets:** exponential kissing number lattice \mathcal{L}^\dagger with $\mathbf{t}^\dagger = \mathbf{0}$.
- ▶ **Parameters:** $\alpha_{close} = 1$, $\nu = 2^{c_{kn}}$.

Gadgets from integer lattices: $\mathcal{L}^\dagger = \mathbb{Z}^n$, $\mathbf{t}^\dagger = t \cdot \mathbf{1}_n$.

Instantiating the Main Theorem

Result 1: $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{o(n)}$ time for all $\alpha > \alpha_{kn}$

- ▶ Try to decrease α_{close} for kissing number gadgets, by perturbing t^\dagger away from $\mathbf{0}$ while keeping $\nu > 1$.
- ▶ Get α_{close} approaching $\alpha_{kn} := 2^{-c_{kn}}$.

Result 2: $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{o(n)}$ time for all $\alpha > \alpha_p^\dagger$

- ▶ Use gadgets from integer lattices.
- ▶ Minimize α_{close} subject to $\nu > 1$, where α_p^\dagger is the optimum.

Result 3: $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{n/C}$ time for all $\alpha > \alpha_{p,C}^\dagger$

- ▶ Use kissing number gadgets: $\alpha_{close} = 1$, $\nu = 2^{c_{kn}}$.
- ▶ Get $\alpha_{p,C}^\dagger := 1 + \varepsilon_p(2^{c_{kn}(C-1)})$ by main theorem.

Result 4: $\text{SVP}_{p,\gamma}$ cannot be solved in $2^{n/C}$ time for all $C > C_p$

- ▶ Similar theorem for SVP based on locally dense gadgets.
- ▶ Use the same gadgets from integer lattices as Result 2.

Instantiating the Main Theorem

Result 1: $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{o(n)}$ time for all $\alpha > \alpha_{kn}$

- ▶ Try to decrease α_{close} for kissing number gadgets, by perturbing t^\dagger away from $\mathbf{0}$ while keeping $\nu > 1$.
- ▶ Get α_{close} approaching $\alpha_{kn} := 2^{-c_{kn}}$.

Result 2: $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{o(n)}$ time for all $\alpha > \alpha_p^\dagger$

- ▶ Use gadgets from integer lattices.
- ▶ Minimize α_{close} subject to $\nu > 1$, where α_p^\dagger is the optimum.

Result 3: $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{n/C}$ time for all $\alpha > \alpha_{p,C}^\dagger$

- ▶ Use kissing number gadgets: $\alpha_{close} = 1$, $\nu = 2^{c_{kn}}$.
- ▶ Get $\alpha_{p,C}^\dagger := 1 + \varepsilon_p(2^{c_{kn}(C-1)})$ by main theorem.

Result 4: $\text{SVP}_{p,\gamma}$ cannot be solved in $2^{n/C}$ time for all $C > C_p$

- ▶ Similar theorem for SVP based on locally dense gadgets.
- ▶ Use the same gadgets from integer lattices as Result 2.

Instantiating the Main Theorem

Result 1: $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{o(n)}$ time for all $\alpha > \alpha_{\text{kn}}$

- ▶ Try to decrease α_{close} for kissing number gadgets, by perturbing \mathbf{t}^\dagger away from $\mathbf{0}$ while keeping $\nu > 1$.
- ▶ Get α_{close} approaching $\alpha_{\text{kn}} := 2^{-c_{\text{kn}}}$.

Result 2: $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{o(n)}$ time for all $\alpha > \alpha_p^\ddagger$

- ▶ Use gadgets from integer lattices.
- ▶ Minimize α_{close} subject to $\nu > 1$, where α_p^\ddagger is the optimum.

Result 3: $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{n/C}$ time for all $\alpha > \alpha_{p,C}^\dagger$

- ▶ Use kissing number gadgets: $\alpha_{\text{close}} = 1$, $\nu = 2^{c_{\text{kn}}}$.
- ▶ Get $\alpha_{p,C}^\dagger := 1 + \varepsilon_p(2^{c_{\text{kn}}(C-1)})$ by main theorem.

Result 4: $\text{SVP}_{p,\gamma}$ cannot be solved in $2^{n/C}$ time for all $C > C_p$

- ▶ Similar theorem for SVP based on locally dense gadgets.
- ▶ Use the same gadgets from integer lattices as Result 2.

Instantiating the Main Theorem

Result 1: $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{o(n)}$ time for all $\alpha > \alpha_{kn}$

- ▶ Try to decrease α_{close} for kissing number gadgets, by perturbing t^\dagger away from $\mathbf{0}$ while keeping $\nu > 1$.
- ▶ Get α_{close} approaching $\alpha_{kn} := 2^{-c_{kn}}$.

Result 2: $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{o(n)}$ time for all $\alpha > \alpha_p^\dagger$

- ▶ Use gadgets from integer lattices.
- ▶ Minimize α_{close} subject to $\nu > 1$, where α_p^\dagger is the optimum.

Result 3: $\text{BDD}_{p,\alpha}$ cannot be solved in $2^{n/C}$ time for all $\alpha > \alpha_{p,C}^\dagger$

- ▶ Use kissing number gadgets: $\alpha_{close} = 1$, $\nu = 2^{c_{kn}}$.
- ▶ Get $\alpha_{p,C}^\dagger := 1 + \varepsilon_p(2^{c_{kn}(C-1)})$ by main theorem.

Result 4: $\text{SVP}_{p,\gamma}$ cannot be solved in $2^{n/C}$ time for all $C > C_p$

- ▶ Similar theorem for SVP based on locally dense gadgets.
- ▶ Use the same gadgets from integer lattices as Result 2.

Open Questions

- ▶ Derandomize the reductions?
 - ▶ Randomness is used in gadgets *and* in main theorem.
- ▶ Construct locally “denser” gadgets?
 - ▶ E.g. better bound on kissing number immediately leads to better quantities in Result 1 and 3 (α_{kn} and $\alpha_{p,C}^\dagger$).

References

 Divesh Aggarwal, Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. Fine-grained hardness of $\text{CVP}(\mathbf{P})$ —everything that we can prove (and nothing else). In *SODA*, pages 1816–1835, 2021.

 Divesh Aggarwal and Eldon Chung. A note on the concrete hardness of the shortest independent vectors problem in lattices, 2020.

 Divesh Aggarwal, Zeyong Li, and Noah Stephens-Davidowitz. A $2^{n/2}$ -time algorithm for \sqrt{n} -SVP and \sqrt{n} -Hermite SVP, and an improved time-approximation tradeoff for (H)SVP. In *EUROCRYPT*, pages 467–497. 2021.

 Divesh Aggarwal and Noah Stephens-Davidowitz. (Gap/S)ETH hardness of SVP. In *STOC*, pages 228–238, 2018.

 Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. On the quantitative hardness of CVP. In *FOCS*, pages 13–24. 2017.

 Huck Bennett and Chris Peikert. Hardness of bounded distance decoding on lattices in ℓ_p norms. In *CCC*, pages Art. 36, 21. 2020.

 Friedrich Eisenbrand and Moritz Venzin. Approximate CVP_p in time $2^{0.802n}$. In *ESA*, pages Art. No. 43, 15. 2020.

 Subhash Khot. Hardness of approximating the shortest vector problem in lattices. *J. ACM*, 52(5):789–808, 2005.

 A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. *Math. Ann.*, 261(4):515–534, 1982.

 Serge Vlăduț. Lattices with exponentially large kissing numbers. *Mosc. J. Comb. Number Theory*, 8(2):163–177, 2019.