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Preliminaries: Lattices

Lattice: regular grid of points in space.
Formally, lattice £ of rank n: set of all integer linear combinations
of a basis B = (by, ..., b,).
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Problem: Attacker with quantum computation can break number
theoretical cryptography.
Solution: Use lattice-based cryptography!

Fact: State-of-the-art attacks are based on solving exact or
low-approximation-factor lattice problems (e.g. SVP).

Problem: Whether attacker can solve these problems in 2" vs.
27/10 ys 2V time has a huge impact on security.

Our work: Address this by showing fine-grained hardness results
for lattice problems.
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Instance: Basis B of lattice L.
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Preliminaries: Bounded Distance Decoding (BDD)
BDD in ¢, with relative distance o (BDD,, ,,)

Instance: Lattice £ and target t with dist,(t,£) < o - A(lp)(ﬁ).
Goal: Find closest lattice vector to t in L.

Smaller o corresponds to stronger promise and easier problem.
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ETH variants:
» ETH: 3-SAT cannot be solved in 2°(") time.
» Strong ETH (SETH): k-SAT cannot be solved in 2(1=)" time.
> Gap-(S)ETH: Gap-3-SAT; 51 & Gap-k-SAT;_s50)1-

» Randomized/non-uniform variants.

Our work exploits the power of different ETH variants, showing
stronger hardness results for BDD/SVP under stronger variants.

We reduce SAT on n variables to lattice problems in rank C - n for
constant C > 0 to show fine-grained hardness results.

Line of research in fine-grained hardness of lattice problems:
CVP [BGS17, ABGS21], SVP [AS18], BDD [BP20], SIVP [AC20].



Our Results: ETH-Type Hardness of BDD

1. BDD,,, cannot be solved in 2°(") time for any p € [1,00) and
a > g, ~ 0.98491, under non-uniform Gap-ETH.
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Our Results: ETH-Type Hardness of BDD

1. BDD,,, cannot be solved in 2°(") time for any p € [1,00) and
a > g, ~ 0.98491, under non-uniform Gap-ETH.

2. BDD,, , cannot be solved in 2°(") time for any p € [1,00) and
o > af,, under randomized Gap-ETH.
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Our Results: SETH-Type Hardness of BDD

3. BDD,, cannot be solved in 2"/ € time for any p € [1,0),
p¢27Z, C>1, and a > a;rj ¢ under non-uniform Gap-SETH.
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Our Results: SETH-Type Hardness of SVP

4. For any p > po ~ 2.1397, p ¢ 27 and C > C,,
SVP,,, cannot be solved in 2"/¢ time for some constant
v > 1, under randomized Gap-SETH. (C, — 1 for p — c0.)




Our Results: SETH-Type Hardness of SVP

4. For any p > po ~ 2.1397, p ¢ 27 and C > C,,
SVP,,, cannot be solved in 2"/¢ time for some constant
v > 1, under randomized Gap-SETH. (C, — 1 for p — c0.)
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Core Proof Technique: Locally Dense Gadgets
Locally dense gadget (L1, 1) in rank n:
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Core Proof Technique: Locally Dense Gadgets
Locally dense gadget (L1, 1) in rank n:
» “Short” count: Ngnort lattice vectors of length less than 1.
> “Close” count: Ngose lattice vectors of distance ajose to t1.

» L1 is locally dense at t' if Nejose > " - Nehort, 1.€.,
exponentially more “close” than “short” lattice vectors.

» Quality parameters: agjose and v.
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Main Theorem for BDD

Main theorem for BDD, informal & simplified
If there exist locally dense gadgets (£, tT) with parameters oiose
and v, then for BDD,, ,:

» it cannot be solved in 2°(" time for any o > Qcloses
under Gap-ETH variants;

> it cannot be solved in 2"/€ time for any

Q> Qclose T+ Ep(VCil)

under Gap-SETH variants.!

1The function &,(-) is strictly decreasing,
and g,(x) — 0 as x — oo.
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[VIZ19]: There exist lattices LT with exponential kissing number.
26an=0o(n) yectors of length A (L1) =1, where ¢, > 0.02194.

A~
<
<
N

Gadgets from kissing number:
> Gadgets: exponential kissing number lattice £ with tf = 0.

> Parameters: qgjose = 1, v = 2%,

Gadgets from integer lattices: £f =27Z" tf =1t-1,,.
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Instantiating the Main Theorem

Result 1: BDD, o cannot be solved in 2°(") time for all & > ayn

> Try to decrease ajose for kissing number gadgets, by
perturbing tT away from 0 while keeping v > 1.
> Get Qlose approaching ayp := 27 %n,
Result 2: BDD,,, cannot be solved in 2°(") time for all o > oz,i,
» Use gadgets from integer lattices.
> Minimize qgjose Subject to v > 1, where ai,r, is the optimum.
Result 3: BDD,  cannot be solved in 27/C time for all a > O‘L,C
P Use kissing number gadgets: cose = 1, v = 2%n,
> Get a;C =1+ £,(2%(C~1)) by main theorem.
Result 4: SVP, , cannot be solved in 2"/C time for all C > Co
» Similar theorem for SVP based on locally dense gadgets.

» Use the same gadgets from integer lattices as Result 2.



Open Questions

» Derandomize the reductions?
» Randomness is used in gadgets and in main theorem.

» Construct locally “denser” gadgets?

» E.g. better bound on kissing number immediately leads to
better quantities in Result 1 and 3 (ak and o, ().
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