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Preliminaries: Lattices

Lattice: regular grid of points in space.
Formally, lattice L of rank n: set of all integer linear combinations
of a basis B = (b1, . . . ,bn).



Preliminaries: Lattice-Based Cryptography

Problem: Attacker with quantum computation can break number
theoretical cryptography.
Solution: Use lattice-based cryptography!

Fact: State-of-the-art attacks are based on solving exact or
low-approximation-factor lattice problems (e.g. SVP).

Problem: Whether attacker can solve these problems in 2n vs.
2n/10 vs. 2

√
n time has a huge impact on security.

Our work: Address this by showing fine-grained hardness results
for lattice problems.
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Preliminaries: Shortest Vector Problem (SVP)

Shortest ℓp norm of nonzero vector in lattice L: λ(p)
1 (L).

γ-approximate SVP in ℓp (SVPp,γ)

Instance: Basis B of lattice L.
Goal: Decide whether λ

(p)
1 (L) ≤ 1 or λ

(p)
1 (L) > γ.
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Preliminaries: Bounded Distance Decoding (BDD)

BDD in ℓp with relative distance α (BDDp,α)

Instance: Lattice L and target t with distp(t,L) ≤ α · λ(p)
1 (L).

Goal: Find closest lattice vector to t in L.

Smaller α corresponds to stronger promise and easier problem.

(p = 2, α = 0.6)
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Preliminaries: Exponential Time Hypothesis (ETH)

ETH variants:

▶ ETH: 3-SAT cannot be solved in 2o(n) time.

▶ Strong ETH (SETH): k-SAT cannot be solved in 2(1−ε)n time.

▶ Gap-(S)ETH: Gap-3-SAT1−δ,1 & Gap-k-SAT1−δ(k),1.

▶ Randomized/non-uniform variants.

Our work exploits the power of different ETH variants, showing
stronger hardness results for BDD/SVP under stronger variants.

We reduce SAT on n variables to lattice problems in rank C · n for
constant C > 0 to show fine-grained hardness results.

Line of research in fine-grained hardness of lattice problems:
CVP [BGS17, ABGS21], SVP [AS18], BDD [BP20], SIVP [AC20].
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Our Results: ETH-Type Hardness of BDD

1. BDDp,α cannot be solved in 2o(n) time for any p ∈ [1,∞) and
α > αkn ≈ 0.98491, under non-uniform Gap-ETH.

2. BDDp,α cannot be solved in 2o(n) time for any p ∈ [1,∞) and

α > α‡
p, under randomized Gap-ETH.
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Our Results: SETH-Type Hardness of BDD

3. BDDp,α cannot be solved in 2n/C time for any p ∈ [1,∞),

p /∈ 2Z, C > 1, and α > α†
p,C , under non-uniform Gap-SETH.

[BP20],C ∈ [ 50 , 200 ]
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Our Results: SETH-Type Hardness of SVP

4. For any p > p0 ≈ 2.1397, p /∈ 2Z and C > Cp,
SVPp,γ cannot be solved in 2n/C time for some constant
γ > 1, under randomized Gap-SETH. (Cp → 1 for p → ∞.)
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Core Proof Technique: Locally Dense Gadgets
Locally dense gadget (L†, t†) in rank n:

▶ “Short” count: Nshort lattice vectors of length less than 1.

▶ “Close” count: Nclose lattice vectors of distance αclose to t†.
▶ L† is locally dense at t† if Nclose ≥ νn · Nshort, i.e.,

exponentially more “close” than “short” lattice vectors.

▶ Quality parameters: αclose and ν.

(n = 2, L† = Z2, t† = ( 12 ,
1
2 ), αclose =

√
2
2 , νn = 4)
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Main Theorem for BDD

Main theorem for BDD, informal & simplified

If there exist locally dense gadgets (L†, t†) with parameters αclose

and ν, then for BDDp,α:

▶ it cannot be solved in 2o(n) time for any α > αclose,
under Gap-ETH variants;

▶ it cannot be solved in 2n/C time for any

α > αclose + εp(ν
C−1) ,

under Gap-SETH variants.1

1The function εp(·) is strictly decreasing,
and εp(x) → 0 as x → ∞.
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Gadgets We Use

[Vlă19]: There exist lattices L† with exponential kissing number:
2cknn−o(n) vectors of length λ1(L†) = 1, where ckn ≥ 0.02194.

Gadgets from kissing number:

▶ Gadgets: exponential kissing number lattice L† with t† = 0.

▶ Parameters: αclose = 1, ν = 2ckn .

Gadgets from integer lattices: L† = Zn, t† = t · 1n.
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Instantiating the Main Theorem

Result 1: BDDp,α cannot be solved in 2o(n) time for all α > αkn

▶ Try to decrease αclose for kissing number gadgets, by
perturbing t† away from 0 while keeping ν > 1.

▶ Get αclose approaching αkn := 2−ckn .

Result 2: BDDp,α cannot be solved in 2o(n) time for all α > α‡
p

▶ Use gadgets from integer lattices.

▶ Minimize αclose subject to ν > 1, where α‡
p is the optimum.

Result 3: BDDp,α cannot be solved in 2n/C time for all α > α†
p,C

▶ Use kissing number gadgets: αclose = 1, ν = 2ckn .

▶ Get α†
p,C := 1 + εp(2

ckn(C−1)) by main theorem.

Result 4: SVPp,γ cannot be solved in 2n/C time for all C > Cp

▶ Similar theorem for SVP based on locally dense gadgets.

▶ Use the same gadgets from integer lattices as Result 2.
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Open Questions

▶ Derandomize the reductions?
▶ Randomness is used in gadgets and in main theorem.

▶ Construct locally “denser” gadgets?
▶ E.g. better bound on kissing number immediately leads to

better quantities in Result 1 and 3 (αkn and α†
p,C ).
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